Home Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
Article
Licensed
Unlicensed Requires Authentication

Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome

  • Markus Egert
Published/Copyright: September 5, 2018
Become an author with De Gruyter Brill

Abstract

The microbiome of the built environment (BE) and its interactions with the human occupants represent a new and highly interdisciplinary research field. The BE is characterized by a great microbial diversity as well as very fluctuating environmental conditions and sharp gradients of physicochemical parameters, which significantly shape the resident microbiomes. A great significance of the BE microbiome for human health is obvious, but far from being fully understood. However, there is a growing body of evidence that antimicrobial and probiotic strategies will have to be balanced in a well-considered manner to successfully manage the BE microbiome in a way that finally is most beneficial for human health.

Kurzfassung

Das Mikrobiom der gebauten Umwelt des Menschen (BE-Mikrobiom) und seine komplexen Interaktionen mit den menschlichen Bewohnern stellen ein junges und sehr interdisziplinäres Forschungsfeld dar. Eine große mikrobielle Vielfalt sowie stark fluktuierende Umweltbedingungen und ausgeprägte physiko-chemische Gradienten sind typisch für Innenräume und prägen das residente Mikrobiom dort. Eine große Bedeutung des BE-Mikrobioms für die menschliche Gesundheit gilt als sicher, dennoch ist vieles noch unklar. Es mehren sich aber die Hinweise, dass antimikrobielle und probiotische Strategien gemeinsam und wohlüberlegt angewendet werden müssen, um das BE-Mikrobiom in einer für die menschlichen Gesundheit bestmöglichen Art und Weise zu managen.


*Correspondence address, Prof. Dr. Markus Egert, Faculty of Medical and Life Sciences, Institute of Precision Medicine Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany, Tel.: +49-7720-307-4554, Fax: +49-7720-307-4207, E-Mail:

Markus Egert (46) studied Biology and Ecology at the Technical University of Karlsruhe, Germany. Subsequently, he did his PhD thesis at the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, in the field of Molecular Microbial Ecology, followed by a 2-year PostDoc period at Wageningen University (The Netherlands) and the Wageningen Centre for Food Sciences focusing on Human Intestinal Microbiology. After that, he joined the Henkel AG & Co. KGaA in Düsseldorf as head of the Laboratory for Microbial Communities, where he led projects in the fields of body malodor production and laundry hygiene. After a brief appointment as professor for Bioanalytics at Coburg University, he was appointed as professor for Microbiology & Hygiene at Furtwangen University, where he is vice dean of the faculty of Medical & Life Sciences. In addition, he is in charge of the Molecular and Technical Medicine study program. Markus’ main research interests are the human microbiome (intestinal tract, skin) and the microbiome of the built environment of humans.


References

1. Xu, J. and Gordon, J. I.: Honor thy symbionts, Proc. Natl. Acad. Sci. U. S. A.100 (2003) 1045210459. PMid:12923294; 10.1073/pnas.1734063100Search in Google Scholar PubMed PubMed Central

2. Lloyd-Price, J., Abu-Ali, G. and Huttenhower, C.: The healthy human microbiome. Genome Med.8 (2016). 10.1186/s13073-016-0307-ySearch in Google Scholar PubMed PubMed Central

3. Icaza-Chávez, M. E.: Gut microbiota in health and disease. Rev. Gastroenterol. Méx. (English Edition)78 (2013) 240248. 10.1016/j.rgmxen.2014.02.009Search in Google Scholar

4. Walker, A. W.: Studying the human microbiota. Adv. Exp. Med. Biol.902 (2016) 532. PMid:27161348; 10.1007/978-3-319-31248-4_2Search in Google Scholar PubMed

5. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K. et al.: Ocean plankton. Structure and function of the global ocean microbiome. Science348 (2015), 1261359. PMid:25999513; 10.1126/science.1261359Search in Google Scholar PubMed

6. Teske, A. P.: The deep subsurface biosphere is alive and well. Trends Microbiol.13 (2005) 402404. PMid:16043356; 10.1016/j.tim.2005.07.004Search in Google Scholar PubMed

7. National Academies of Sciences, Engineering, and Medicine: Microbiomes of the built environment: A research agenda for indoor microbiology, human health, and buildings. The National Academies Press, Washington, DC (2017). 10.17226/23647Search in Google Scholar PubMed

8. NESCent Working Group on the Evolutionary Biology of the Built Environment, Martin, L. J., Adams, R. I., Bateman, A., Bik, H. M. et al.: Evolution of the indoor biome. Trends Ecol. Evol.30 (2015) 223232. PMid:25770744; 10.1016/j.tree.2015.02.001Search in Google Scholar PubMed

9. Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M. et al.: Longitudinal analysis of microbial interaction between humans and the indoor environment. Science345 (2014) 10481052. PMid:25170151; 10.1126/science.1254529Search in Google Scholar PubMed PubMed Central

10. Kelley, S. T. and Gilbert, J. A.: Studying the microbiology of the indoor environment. Genome biology14 (2013) 202. PMid:23514020; 10.1186/gb-2013-14-2-202Search in Google Scholar PubMed PubMed Central

11. Stephens, B.: What have we learned about the microbiomes of indoor environments? mSystems1 (2016) e0008316. 10.1128/mSystems.00083-16Search in Google Scholar PubMed PubMed Central

12. Savage, A. M., Hills, J., Driscoll, K., Fergus, D. J., Grunden, A. M. et al.: Microbial diversity of extreme habitats in human homes. PeerJ4 (2016) e2376. PMid:27672493; 10.7717/peerj.2376Search in Google Scholar PubMed PubMed Central

13. Leong, M., Bertone, M. A., Savage, A. M., Bayless, K. M., Dunn, R. R. et al.: The habitats humans provide: Factors affecting the diversity and composition of arthropods in houses. Sci. Rep.7 (2017) 15347. PMid:29127355; 10.1038/s41598-017-15584-2Search in Google Scholar PubMed PubMed Central

14. Adams, R. I., Bateman, A. C., Bik, H. M. and Meadow, J. F.: Microbiota of the indoor environment: a meta-analysis. Microbiome3 (2015) 49. PMid:26459172; 10.1186/s40168-015-0108-3Search in Google Scholar PubMed PubMed Central

15. Dunn, R. R., Fierer, N., Henley, J. B., Leff, J. W. and Menninger, H. L.: Home life: factors structuring the bacterial diversity found within and between homes. PLoS One8 (2013) e64133. PMid:23717552; 10.1371/journal.pone.0064133Search in Google Scholar PubMed PubMed Central

16. Miletto, M. and Lindow, S. E.: Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome3 (2015) 61. PMid:26653310; 10.1186/s40168-015-0128-zSearch in Google Scholar PubMed PubMed Central

17. Adams, R. I., Bhangar, S., Pasut, W., Arens, E. A., Taylor, J. W. et al.: Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE10 (2015) e0128022. PMid:26024222; 10.1371/journal.pone.0128022Search in Google Scholar PubMed PubMed Central

18. Prussin, A. J. and Marr, L. C.: Sources of airborne microorganisms in the built environment. Microbiome3 (2015) 78. PMid:26694197; 10.1186/s40168-015-0144-zSearch in Google Scholar PubMed PubMed Central

19. Cardinale, M., Kaiser, D., Lueders, T., Schnell, S. and Egert, M.: Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Sci. Rep.7 (2017) 5791. PMid:28725026; 10.1038/s41598-017-06055-9Search in Google Scholar PubMed PubMed Central

20. Kapono, C. A., Morton, J. T., Bouslimani, A., Melnik, A. V., Orlinsky, K. et al.: Creating a 3D microbial and chemical snapshot of a human habitat. Sci. Rep.8 (2018) 3669. PMid:29487294; 10.1038/s41598-018-21541-4Search in Google Scholar PubMed PubMed Central

21. Stapleton, K., Hill, K., Day, K., Perry, J. D. and Dean, J. R.: The potential impact of washing machines on laundry malodour generation. Lett. Appl. Microbiol.56 (2013) 299306. PMid:23350695; 10.1111/lam.12050Search in Google Scholar PubMed

22. Gattlen, J., Amberg, C., Zinn, M. and Mauclaire, L.: Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling26 (2010) 873882. PMid:20954022; 10.1080/08927014.2010.524297Search in Google Scholar PubMed

23. BloomfieldS. F., ExnerM., Carlo Signorelli, C., NathK. J., and ScottE. A.: The chain of infection transmission in the home and everyday life settings, and the role of hygiene in reducing the risk of infection. 2012; http://www.ifh-homehygiene.org/IntegratedCRD.nsf/111e68ea0824afe1802575070003f039/9df1597d905889868025729700617093?OpenDocument.Search in Google Scholar

24. Statistisches Bundesamt: Anzahl der Pflegebedürftigen in Deutschland in den Jahren 1999 bis 2015 (in 1.000). Statista – Das Statistik-Portal, Statista, https://de.statista.com/statistik/daten/studie/2722/umfrage/pflegebeduerftige-in-deutschland-seit-1999/, Accessed 3. April 2018.Search in Google Scholar

25. Focus Money: Prognostizierte Entwicklung der Altersstruktur in Deutschland von 2010 bis 2050 (in Millionen Einwohner). Statista – Das Statistik-Portal, Statista, https://de.statista.com/statistik/daten/studie/163252/umfrage/prognose-der-altersstruktur-in-deutschland-bis-2050/, Accessed 3. April 2018.Search in Google Scholar

26. Bloomfield, S. F., Carling, P. C. and Exner, M.: (2017) A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS Hyg. Infect. Control12 (2017) Doc08. PMid:28670508; 10.3205/dgkh000293Search in Google Scholar PubMed PubMed Central

27. Peccia, J. and Kwan, S. E.: Buildings, beneficial microbes, and health. Trends Microbiol.24 (2016) 595597. PMid:27397930; 10.1016/j.tim.2016.04.007Search in Google Scholar PubMed

28. Gilbert, J. A.: How do we make indoor environments and healthcare settings healthier? Microb. Biotechnol.10 (2017) 1113. PMid:27748568; 10.1111/1751-7915.12430Search in Google Scholar PubMed PubMed Central

29. Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V. et al.: Innate immunity and asthma risk in amish and hutterite farm children. New Engl. J. Med.375 (2016) 411421. PMid:27518660; 10.1056/NEJMoa1508749Search in Google Scholar PubMed PubMed Central

30. Fujimura, K. E., Demoor, T., Rauch, M., Faruqi, A. A., Jang, S. et al.: House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. U. S. A.111 (2014) 805810. PMid:24344318; 10.1073/pnas.1310750111Search in Google Scholar PubMed PubMed Central

31. Raghupathi, P. K., Zupančič, J., Brejnrod, A. D., Jacquiod, S., Houf, K. et al.: Microbiomes in dishwashers: Analysis of the microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities. Appl. Environ. Microbiol.84 (2018) e0275517. PMid:29330184; 10.1128/AEM.02755-17Search in Google Scholar PubMed PubMed Central

32. Brands, B., Honisch, M., Merettig, N., Bichler, S., Stamminger, R. et al.: Qualitative and quantitative analysis of microbial communities in household dishwashers in Germany. Tenside Surfactants Deterg.53 (2016) 112118. 10.3139/113.110415Search in Google Scholar

33. Zupančič, J., Novak Babič, M., Zalar, P. and Gunde-Cimerman, N.: The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PloS ONE11 (2016) e0148166. PMid:26867131; 10.1371/journal.pone.0148166Search in Google Scholar PubMed PubMed Central

34. Zupančič, J., Raghupathi, P. K., Houf, K., Burm⊘lle, M., S⊘rensen, S. J. et al.: Synergistic interactions in microbial biofilms facilitate the establishment of opportunistic pathogenic fungi in household dishwashers. Front. Microbiol.9 (2018) 21. PMid:29441043; 10.3389/fmicb.2018.00021Search in Google Scholar PubMed PubMed Central

35. Nix, I. D., Frontzek, A. and Bockmühl, D. P.: Characterization of microbial communities in household washing machines. Tenside Surfactants Deterg.52 (2015) 432440. 10.3139/113.110394Search in Google Scholar

36. Babič, M. N., Zalar, P., Ženko, B., Schroers, H.-J., Džeroski, S.: et al.: Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol.119 (2015) 95113. PMid:25749362; 10.1016/j.funbio.2014.10.007Search in Google Scholar PubMed

37. Callewaert, C., van Nevel, S., Kerckhof, F.-M., Granitsiotis, M. S. and Boon, N.: Bacterial exchange in household washing machines. Front. Microbiol.6 (2015) 1381. PMid:26696989; 10.3389/fmicb.2015.01381Search in Google Scholar PubMed PubMed Central

38. Egert, M.: The BE-Microbiome – Communities with relevance for laundry and home care. SOFW J.143 (2017) 4448.Search in Google Scholar

39. Bockmühl, D. P.: Laundry hygiene-how to get more than clean. J. Appl. Microbiol.122 (2017) 11241133. PMid:28092141; 10.1111/jam.13402Search in Google Scholar PubMed

40. Kubota, H., Mitani, A., Niwano, Y., Takeuchi, K., Tanaka, A. et al.: Moraxella species are primarily responsible for generating malodor in laundry. Appl. Environ. Microbiol.78, (2012) 33173324. PMid:22367080; 10.1128/AEM.07816-11Search in Google Scholar PubMed PubMed Central

41. Webber, M. A., Buckner, M. M. C., Redgrave, L. S., Ifill, G., Mitchenall, L. A., Webb, C. et al.: Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J. Antimicrob. Chemother.72 (2017) 27552763. PMid:29091182; 10.1093/jac/dkx201Search in Google Scholar PubMed

42. Rehberg, L., Frontzek, A., Melhus, Å. and Bockmühl, D. P.: Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria. J. Appl. Microbiol.123 (2017) 13961406. PMid:28845592; 10.1111/jam.13574Search in Google Scholar PubMed

43. Bloomfield, S. F., Rook, G. A., Scott, E. A., Shanahan, F., Stanwell-Smith, R. et al.: Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public Health136 (2016) 213224. PMid:27354505; 10.1177/1757913916650225Search in Google Scholar PubMed PubMed Central

44. Walsh, C. J., Guinane, C. M., O’Toole, P. W. and Cotter, P. D.: Beneficial modulation of the gut microbiota. FEBS Lett.588 (2014) 41204130. PMid:24681100; 10.1016/j.febslet.2014.03.035Search in Google Scholar PubMed

45. Egert, M., Simmering, R. and Riedel, C. U.: The association of the skin microbiota with health, immunity, and disease. Clin. Pharmacol. Ther.102 (2017) 6269. PMid:28380682; 10.1002/cpt.698Search in Google Scholar PubMed

46. Caselli, E.: Hygiene: microbial strategies to reduce pathogens and drug resistance in clinical settings. Microb. Biotechnol.10 (2017) 10791083. PMid:28677216; 10.1111/1751-7915.12755Search in Google Scholar PubMed PubMed Central

Received: 2018-04-03
Accepted: 2018-06-13
Published Online: 2018-09-05
Published in Print: 2018-09-14

© 2018, Carl Hanser Publisher, Munich

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110577/html
Scroll to top button