Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
-
Markus Egert
Abstract
The microbiome of the built environment (BE) and its interactions with the human occupants represent a new and highly interdisciplinary research field. The BE is characterized by a great microbial diversity as well as very fluctuating environmental conditions and sharp gradients of physicochemical parameters, which significantly shape the resident microbiomes. A great significance of the BE microbiome for human health is obvious, but far from being fully understood. However, there is a growing body of evidence that antimicrobial and probiotic strategies will have to be balanced in a well-considered manner to successfully manage the BE microbiome in a way that finally is most beneficial for human health.
Kurzfassung
Das Mikrobiom der gebauten Umwelt des Menschen (BE-Mikrobiom) und seine komplexen Interaktionen mit den menschlichen Bewohnern stellen ein junges und sehr interdisziplinäres Forschungsfeld dar. Eine große mikrobielle Vielfalt sowie stark fluktuierende Umweltbedingungen und ausgeprägte physiko-chemische Gradienten sind typisch für Innenräume und prägen das residente Mikrobiom dort. Eine große Bedeutung des BE-Mikrobioms für die menschliche Gesundheit gilt als sicher, dennoch ist vieles noch unklar. Es mehren sich aber die Hinweise, dass antimikrobielle und probiotische Strategien gemeinsam und wohlüberlegt angewendet werden müssen, um das BE-Mikrobiom in einer für die menschlichen Gesundheit bestmöglichen Art und Weise zu managen.
References
1. Xu, J. and Gordon, J. I.: Honor thy symbionts, Proc. Natl. Acad. Sci. U. S. A.100 (2003) 10452–10459. PMid:12923294; 10.1073/pnas.1734063100Search in Google Scholar PubMed PubMed Central
2. Lloyd-Price, J., Abu-Ali, G. and Huttenhower, C.: The healthy human microbiome. Genome Med.8 (2016). 10.1186/s13073-016-0307-ySearch in Google Scholar PubMed PubMed Central
3. Icaza-Chávez, M. E.: Gut microbiota in health and disease. Rev. Gastroenterol. Méx. (English Edition)78 (2013) 240–248. 10.1016/j.rgmxen.2014.02.009Search in Google Scholar
4. Walker, A. W.: Studying the human microbiota. Adv. Exp. Med. Biol.902 (2016) 5–32. PMid:27161348; 10.1007/978-3-319-31248-4_2Search in Google Scholar PubMed
5. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K. et al.: Ocean plankton. Structure and function of the global ocean microbiome. Science348 (2015), 1261359. PMid:25999513; 10.1126/science.1261359Search in Google Scholar PubMed
6. Teske, A. P.: The deep subsurface biosphere is alive and well. Trends Microbiol.13 (2005) 402–404. PMid:16043356; 10.1016/j.tim.2005.07.004Search in Google Scholar PubMed
7. National Academies of Sciences, Engineering, and Medicine: Microbiomes of the built environment: A research agenda for indoor microbiology, human health, and buildings. The National Academies Press, Washington, DC (2017). 10.17226/23647Search in Google Scholar PubMed
8. NESCent Working Group on the Evolutionary Biology of the Built Environment, Martin, L. J., Adams, R. I., Bateman, A., Bik, H. M. et al.: Evolution of the indoor biome. Trends Ecol. Evol.30 (2015) 223–232. PMid:25770744; 10.1016/j.tree.2015.02.001Search in Google Scholar PubMed
9. Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M. et al.: Longitudinal analysis of microbial interaction between humans and the indoor environment. Science345 (2014) 1048–1052. PMid:25170151; 10.1126/science.1254529Search in Google Scholar PubMed PubMed Central
10. Kelley, S. T. and Gilbert, J. A.: Studying the microbiology of the indoor environment. Genome biology14 (2013) 202. PMid:23514020; 10.1186/gb-2013-14-2-202Search in Google Scholar PubMed PubMed Central
11. Stephens, B.: What have we learned about the microbiomes of indoor environments? mSystems1 (2016) e00083–16. 10.1128/mSystems.00083-16Search in Google Scholar PubMed PubMed Central
12. Savage, A. M., Hills, J., Driscoll, K., Fergus, D. J., Grunden, A. M. et al.: Microbial diversity of extreme habitats in human homes. PeerJ4 (2016) e2376. PMid:27672493; 10.7717/peerj.2376Search in Google Scholar PubMed PubMed Central
13. Leong, M., Bertone, M. A., Savage, A. M., Bayless, K. M., Dunn, R. R. et al.: The habitats humans provide: Factors affecting the diversity and composition of arthropods in houses. Sci. Rep.7 (2017) 15347. PMid:29127355; 10.1038/s41598-017-15584-2Search in Google Scholar PubMed PubMed Central
14. Adams, R. I., Bateman, A. C., Bik, H. M. and Meadow, J. F.: Microbiota of the indoor environment: a meta-analysis. Microbiome3 (2015) 49. PMid:26459172; 10.1186/s40168-015-0108-3Search in Google Scholar PubMed PubMed Central
15. Dunn, R. R., Fierer, N., Henley, J. B., Leff, J. W. and Menninger, H. L.: Home life: factors structuring the bacterial diversity found within and between homes. PLoS One8 (2013) e64133. PMid:23717552; 10.1371/journal.pone.0064133Search in Google Scholar PubMed PubMed Central
16. Miletto, M. and Lindow, S. E.: Relative and contextual contribution of different sources to the composition and abundance of indoor air bacteria in residences. Microbiome3 (2015) 61. PMid:26653310; 10.1186/s40168-015-0128-zSearch in Google Scholar PubMed PubMed Central
17. Adams, R. I., Bhangar, S., Pasut, W., Arens, E. A., Taylor, J. W. et al.: Chamber bioaerosol study: Outdoor air and human occupants as sources of indoor airborne microbes. PLoS ONE10 (2015) e0128022. PMid:26024222; 10.1371/journal.pone.0128022Search in Google Scholar PubMed PubMed Central
18. Prussin, A. J. and Marr, L. C.: Sources of airborne microorganisms in the built environment. Microbiome3 (2015) 78. PMid:26694197; 10.1186/s40168-015-0144-zSearch in Google Scholar PubMed PubMed Central
19. Cardinale, M., Kaiser, D., Lueders, T., Schnell, S. and Egert, M.: Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Sci. Rep.7 (2017) 5791. PMid:28725026; 10.1038/s41598-017-06055-9Search in Google Scholar PubMed PubMed Central
20. Kapono, C. A., Morton, J. T., Bouslimani, A., Melnik, A. V., Orlinsky, K. et al.: Creating a 3D microbial and chemical snapshot of a human habitat. Sci. Rep.8 (2018) 3669. PMid:29487294; 10.1038/s41598-018-21541-4Search in Google Scholar PubMed PubMed Central
21. Stapleton, K., Hill, K., Day, K., Perry, J. D. and Dean, J. R.: The potential impact of washing machines on laundry malodour generation. Lett. Appl. Microbiol.56 (2013) 299–306. PMid:23350695; 10.1111/lam.12050Search in Google Scholar PubMed
22. Gattlen, J., Amberg, C., Zinn, M. and Mauclaire, L.: Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling26 (2010) 873–882. PMid:20954022; 10.1080/08927014.2010.524297Search in Google Scholar PubMed
23. BloomfieldS. F., ExnerM., Carlo Signorelli, C., NathK. J., and ScottE. A.: The chain of infection transmission in the home and everyday life settings, and the role of hygiene in reducing the risk of infection. 2012; http://www.ifh-homehygiene.org/IntegratedCRD.nsf/111e68ea0824afe1802575070003f039/9df1597d905889868025729700617093?OpenDocument.Search in Google Scholar
24. Statistisches Bundesamt: Anzahl der Pflegebedürftigen in Deutschland in den Jahren 1999 bis 2015 (in 1.000). Statista – Das Statistik-Portal, Statista, https://de.statista.com/statistik/daten/studie/2722/umfrage/pflegebeduerftige-in-deutschland-seit-1999/, Accessed 3. April 2018.Search in Google Scholar
25. Focus Money: Prognostizierte Entwicklung der Altersstruktur in Deutschland von 2010 bis 2050 (in Millionen Einwohner). Statista – Das Statistik-Portal, Statista, https://de.statista.com/statistik/daten/studie/163252/umfrage/prognose-der-altersstruktur-in-deutschland-bis-2050/, Accessed 3. April 2018.Search in Google Scholar
26. Bloomfield, S. F., Carling, P. C. and Exner, M.: (2017) A unified framework for developing effective hygiene procedures for hands, environmental surfaces and laundry in healthcare, domestic, food handling and other settings. GMS Hyg. Infect. Control12 (2017) Doc08. PMid:28670508; 10.3205/dgkh000293Search in Google Scholar PubMed PubMed Central
27. Peccia, J. and Kwan, S. E.: Buildings, beneficial microbes, and health. Trends Microbiol.24 (2016) 595–597. PMid:27397930; 10.1016/j.tim.2016.04.007Search in Google Scholar PubMed
28. Gilbert, J. A.: How do we make indoor environments and healthcare settings healthier? Microb. Biotechnol.10 (2017) 11–13. PMid:27748568; 10.1111/1751-7915.12430Search in Google Scholar PubMed PubMed Central
29. Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V. et al.: Innate immunity and asthma risk in amish and hutterite farm children. New Engl. J. Med.375 (2016) 411–421. PMid:27518660; 10.1056/NEJMoa1508749Search in Google Scholar PubMed PubMed Central
30. Fujimura, K. E., Demoor, T., Rauch, M., Faruqi, A. A., Jang, S. et al.: House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc. Natl. Acad. Sci. U. S. A.111 (2014) 805–810. PMid:24344318; 10.1073/pnas.1310750111Search in Google Scholar PubMed PubMed Central
31. Raghupathi, P. K., Zupančič, J., Brejnrod, A. D., Jacquiod, S., Houf, K. et al.: Microbiomes in dishwashers: Analysis of the microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities. Appl. Environ. Microbiol.84 (2018) e02755–17. PMid:29330184; 10.1128/AEM.02755-17Search in Google Scholar PubMed PubMed Central
32. Brands, B., Honisch, M., Merettig, N., Bichler, S., Stamminger, R. et al.: Qualitative and quantitative analysis of microbial communities in household dishwashers in Germany. Tenside Surfactants Deterg.53 (2016) 112–118. 10.3139/113.110415Search in Google Scholar
33. Zupančič, J., Novak Babič, M., Zalar, P. and Gunde-Cimerman, N.: The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PloS ONE11 (2016) e0148166. PMid:26867131; 10.1371/journal.pone.0148166Search in Google Scholar PubMed PubMed Central
34. Zupančič, J., Raghupathi, P. K., Houf, K., Burm⊘lle, M., S⊘rensen, S. J. et al.: Synergistic interactions in microbial biofilms facilitate the establishment of opportunistic pathogenic fungi in household dishwashers. Front. Microbiol.9 (2018) 21. PMid:29441043; 10.3389/fmicb.2018.00021Search in Google Scholar PubMed PubMed Central
35. Nix, I. D., Frontzek, A. and Bockmühl, D. P.: Characterization of microbial communities in household washing machines. Tenside Surfactants Deterg.52 (2015) 432–440. 10.3139/113.110394Search in Google Scholar
36. Babič, M. N., Zalar, P., Ženko, B., Schroers, H.-J., Džeroski, S.: et al.: Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol.119 (2015) 95–113. PMid:25749362; 10.1016/j.funbio.2014.10.007Search in Google Scholar PubMed
37. Callewaert, C., van Nevel, S., Kerckhof, F.-M., Granitsiotis, M. S. and Boon, N.: Bacterial exchange in household washing machines. Front. Microbiol.6 (2015) 1381. PMid:26696989; 10.3389/fmicb.2015.01381Search in Google Scholar PubMed PubMed Central
38. Egert, M.: The BE-Microbiome – Communities with relevance for laundry and home care. SOFW J.143 (2017) 44–48.Search in Google Scholar
39. Bockmühl, D. P.: Laundry hygiene-how to get more than clean. J. Appl. Microbiol.122 (2017) 1124–1133. PMid:28092141; 10.1111/jam.13402Search in Google Scholar PubMed
40. Kubota, H., Mitani, A., Niwano, Y., Takeuchi, K., Tanaka, A. et al.: Moraxella species are primarily responsible for generating malodor in laundry. Appl. Environ. Microbiol.78, (2012) 3317–3324. PMid:22367080; 10.1128/AEM.07816-11Search in Google Scholar PubMed PubMed Central
41. Webber, M. A., Buckner, M. M. C., Redgrave, L. S., Ifill, G., Mitchenall, L. A., Webb, C. et al.: Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J. Antimicrob. Chemother.72 (2017) 2755–2763. PMid:29091182; 10.1093/jac/dkx201Search in Google Scholar PubMed
42. Rehberg, L., Frontzek, A., Melhus, Å. and Bockmühl, D. P.: Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria. J. Appl. Microbiol.123 (2017) 1396–1406. PMid:28845592; 10.1111/jam.13574Search in Google Scholar PubMed
43. Bloomfield, S. F., Rook, G. A., Scott, E. A., Shanahan, F., Stanwell-Smith, R. et al.: Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public Health136 (2016) 213–224. PMid:27354505; 10.1177/1757913916650225Search in Google Scholar PubMed PubMed Central
44. Walsh, C. J., Guinane, C. M., O’Toole, P. W. and Cotter, P. D.: Beneficial modulation of the gut microbiota. FEBS Lett.588 (2014) 4120–4130. PMid:24681100; 10.1016/j.febslet.2014.03.035Search in Google Scholar PubMed
45. Egert, M., Simmering, R. and Riedel, C. U.: The association of the skin microbiota with health, immunity, and disease. Clin. Pharmacol. Ther.102 (2017) 62–69. PMid:28380682; 10.1002/cpt.698Search in Google Scholar PubMed
46. Caselli, E.: Hygiene: microbial strategies to reduce pathogens and drug resistance in clinical settings. Microb. Biotechnol.10 (2017) 1079–1083. PMid:28677216; 10.1111/1751-7915.12755Search in Google Scholar PubMed PubMed Central
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Editorial
- Editorial
- Review Articles
- Developing an Evidence-Based Approach to Domestic Hygiene Which Protects Against Infection Whilst Also Addressing Sustainability Issues
- Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
- Dishwasher
- Micrococcus luteus – An Alternative Test Germ for Testing the Hygienic Performance of Commercial Freshwater Dishwashers
- Development of a Test Method for Analyzing the Hygienic Performance of Commercial Dishwashers Operating on the Fresh Water Principle
- Microbial Reduction in Low Temperature Dishwashing Cycles
- Laundry
- Laundry Hygiene and Visible Cleanliness: An Attempt to Predict the Antimicrobial Efficacy of Laundering Processes by its Cleaning Performance
- Test Methods
- Test Method Dependent Efficacy of Antibacterial Textiles
- A New Approach for a Practical Assessment of Antimicrobial Surfaces Based on a Stamp Assay to Quantify Transfer Routes of Pathogens
- Towards a Lab-Scale Efficacy Test Method for the Evaluation of Hygienic Laundry Rinse-Stage Disinfectants
Articles in the same Issue
- Contents/Inhalt
- Contents/Inhalt
- Editorial
- Editorial
- Review Articles
- Developing an Evidence-Based Approach to Domestic Hygiene Which Protects Against Infection Whilst Also Addressing Sustainability Issues
- Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome
- Dishwasher
- Micrococcus luteus – An Alternative Test Germ for Testing the Hygienic Performance of Commercial Freshwater Dishwashers
- Development of a Test Method for Analyzing the Hygienic Performance of Commercial Dishwashers Operating on the Fresh Water Principle
- Microbial Reduction in Low Temperature Dishwashing Cycles
- Laundry
- Laundry Hygiene and Visible Cleanliness: An Attempt to Predict the Antimicrobial Efficacy of Laundering Processes by its Cleaning Performance
- Test Methods
- Test Method Dependent Efficacy of Antibacterial Textiles
- A New Approach for a Practical Assessment of Antimicrobial Surfaces Based on a Stamp Assay to Quantify Transfer Routes of Pathogens
- Towards a Lab-Scale Efficacy Test Method for the Evaluation of Hygienic Laundry Rinse-Stage Disinfectants