Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
-
Lusine R. Harutyunyan
Abstract
The effect of amino acids (L-glycine, L-alanine, L-phenylalanine, L-serine, L-leucine, L-aspartic acid, L-lysine, L-methionine) on the micellization, surface activity, volumetric and viscometric properties of the cationic surfactant cetylpyridinium bromide in aqueous solution was studied. The critical micelle concentration and free energy of micellization were evaluated and discussed. The surface excess concentration, the minimum area per molecule, the surface pressure at the critical micelle concentration and the standard free energy of adsorption were obtained from the surface activity studies. The behavior of standard partial molar volume is discussed. The viscosity data were analyzed by Jones-Dole semi-empirical equation for both the premicellar and postmicellar regions.
Kurzfassung
Die Wirkung der Aminosäuren L-Glycin, L-Alanin, L-Phenylalanin, L-Serin, L-Leucin, L-Asparaginsäure, L-Lysin, L-Methionin auf die Mizellenbildung, die Oberflächenaktivität, und die volumetrischen und viskosimetrischen Eigenschaften des kationischen Tensids Cetylpyridiniumbromid in wässriger Lösung wurde untersucht. Die kritische Micellenbildungkonzentration und die freie Energie der Mizellenbildung wurden bestimmt und diskutiert. Die Oberflächenüberschusskonzentration, der minimale Platzbedarf pro Molekül, der Oberflächendruck bei der kritischen Mizellenbildungskonzentration und die freie Adsorptionsenergie wurden aus Oberflächenaktivitätmessungen erhalten. Das Verhalten des molaren Standardvolumens wird diskutiert. Die Viskositätsdaten wurden durch die halb-empirische Jones-Dole-Gleichung sowohl für die premicellare als auch die postmikellare Region analysiert.
References
1. Yan Z. , ZhangQ., LiW. and WangJ.: Effect of temperature on the interactions of glycyl dipeptides with sodium dodecyl sulfate in aqueous solution: a volumetric, conductometric and fluorescence probe study, J. Chem. Eng. Data55 (2010) 3560–3566. 10.1021/je100068ySuche in Google Scholar
2. Ghosh S. and BanerjeeA.: A multi-technique approach in protein/surfactant interaction study: physiochemical aspects of sodium dodecyl sulfate in presence of trypsin in aqueous medium, Biomacromolecules3 (2002) 9–16. 10.1021/bm005644dSuche in Google Scholar
3. Tummino P. J. and GafniA.: Determination of the aggregation number of detergent micelles using steady-state fluorescence quenching, Biophys. J.64 (1993) 1580–1587. 10.1016/S0006–3495(93)81528–5Suche in Google Scholar
4. Goddard E. D. and AnanthapadmanabhanK. P.: Interactions of Surfactants with Polymers and Proteins, CRC Press, Boca Raton, FL (1993). 10.1080/01932699408943565Suche in Google Scholar
5. Brash J. L. and HorettT. A.: Proteins at Interfaces II: Fundamentals and Applications, vol.602. American Chemical Society, Washington, DC (1995). 10.1021/bk-1995–0602Suche in Google Scholar
6. Ali A. , MalikN. A., UzairS. and AliM.: Conductometric and fluorescence studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids, Molec. Phys.112 (2014) 2681–2693. 10.1080/00268976.2014.905720Suche in Google Scholar
7. Hvidt A. and WesthP.: Different views on the stability of protein conformations and hydrophobic effects, J. Solut. Chem.27 (1998) 395–402. 10.1023/A:1022696404041Suche in Google Scholar
8. Carnero-Ruiz C. , HierrezueloJ. M. and Molina-BolívarJ. A.: Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide, Colloid Polym. Sci.286 (2008) 1281–1289. 10.1007/s00396-008-1893-zSuche in Google Scholar
9. Adamson A. W. : Physical Chemistry of Surfaces, Wiley, New York (1976).Suche in Google Scholar
10. Luethi P. and LuisiP. L.: Enzymatic synthesis of hydrocarbon-soluble peptides with reverse micelles, J. Am. Chem. Soc.106 (1984) 7285–7286. 10.1021/ja00335a092Suche in Google Scholar
11. Badarayani R. and KumarA.: Viscometric study of glycine, L-alanine, glycylglycine in aqueous tetra-n-alkylammonium bromide solutions at 298.15 K, J. Chem. Thermodyn.36 (2004) 983–991. 10.1016/j.jct.2004.07.006Suche in Google Scholar
12. Singh S. K. , KunduA. and KishoreN.: Interaction of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T = 298.15 K: a volumetric approach, J. Chem. Thermodyn.36 (2004) 7–16. 10.1016/j.jct.2003.09.010Suche in Google Scholar
13. Sharma K. and ChauhanS.: Apparent molar volume, compressibility and viscometric studies of sodium dodecyl benzene sulfonate (SDBS) and dodecyltrimethylammonium bromide (DTAB) in aqueous amino acid solutions: a thermo-acoustic approach, Thermochim. Acta578 (2014) 15–27. 10.1016/j.tca.2013.12.021Suche in Google Scholar
14. McKee T. and McKeeJ. R.: Biochemistry. The Molecular Basis of Life. Chapter 5: Amino Acids, Peptides and Proteins, Oxford University Press, New York (2010).Suche in Google Scholar
15. Bakshi M. S. and KaurG.: Mixed micelles of hexadecylpyridinium bromide + tetradecyltrimethylammonium bromide in aqueous glycol oligomers, J. Surf. Deterg.3 (2000) 159–166. 10.1007/s11743-000-0120-5Suche in Google Scholar
16. Lukáč M. , MrvaM., GarajováM., MojžišováG., VarinskáL., MojžišJ., SabolM., KubincováJ., HaragováH., OndriskaF. and DevínskyF.: Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride, Europ. J. Med. Chem.66 (2013) 46–55. 10.1016/j.ejmech.2013.05.033Suche in Google Scholar
17. Graciani M. , MunozM., RodriguezA. and MoyaM. L.: Water–N,N-dimethylformamide alkyltrimethylammonium bromide micellar solutions: thermodynamic, structural and kinetic studies, Langmuir21 (2005) 3303–3310. 10.1021/la046833aSuche in Google Scholar
18. Chauhan S. and SharmaK.: Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzenesulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study, J. Chem. Thermodyn.71 (2014) 205–211. 10.1016/j.jct.2013.12.019Suche in Google Scholar
19. Qui X. , FangW., LeiQ. and LinR.: Enthalpies of transfer of amino acids from water to aqueous cationic surfactants solutions at 298.15 K, J. Chem. Eng. Data53 (2008) 942–945. 10.1021/je7006082Suche in Google Scholar
20. Harutyunyan L. R. and MarkarianS. A.: Effect of dimethylsulfoxide and diethylsulfoxide on micellization and viscometric properties of cetylpyridinium bromide aqueous solutions, J. Mol. Liq.160 (2011) 136–139. 10.1016/j.molliq.2011.03.010Suche in Google Scholar
21. Roy M. N. , DasR. K. and BhattacharjeeA.: Apparent molar volume, viscosity B-coefficient and adiabatic compressibility of tetrabutylammonium bromide in aqueous ascorbic acid solutions at T = 298.15, 308.15 and 318.15 K, Russ. J. Phys. Chem. A84 (2010) 2201–2210. 10.1134/S0036024410130017Suche in Google Scholar
22. Ali A. , TasneemS., BidhuriP., BhushanV. and MalikN. A.: Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures, Russ. J. Phys. Chem. A86 (2012) 1923–1929. 10.1134/S0036024412130031Suche in Google Scholar
23. Yu L. , LuT., LuanY. X., LiuJ. and XuG. Y.: Studies on the effects of amino acids on micellization of CTAB via surface tension measurements. Colloids Surf. A257–258 (2005) 375–379. 10.1016/j.colsurfa.2004.10.066Suche in Google Scholar
24. Arutyunyan N. G. , ArutyunyanL. R., GrigoryanV. V. and ArutyunyanR. S.: Effect of amino acids on the critical micellization concentration of different surfactants, Colloid J.70 (2008) 666–668. 10.1134/S1061933X08050177Suche in Google Scholar
25. Harutyunyan L. R. : Effect of amino acids on micellization, surface activity and micellar properties of nonionic surfactant hexadecyl alcohol ethoxylate (25EO) in aqueous solutions, J. Surfact. Deterg.18 (2015) 73–81. 10.1007/s11743-014-1609-ySuche in Google Scholar
26. Bales B. L. : A definition of the degree of ionization of a micelle based on its aggregation number, J. Phys. Chem. B105 (2001) 6798–6804. 10.1021/jp004576mSuche in Google Scholar
27. Bakshi M. S. and KaurG.: Hexadecyltrimethylammonium bromide+tetradecyl trimethyl ammonium bromide mixed micelles in aqueous glycol oligomers, J. Macromol. Sci. A36 (1999) 697–718. 10.1081/MA-100101558Suche in Google Scholar
28. Manna K. and PandaA. K.: Physicochemical studies on the interfacial and micellization behavior of CTAB in aqueous polyethylene glycol media, J. Surfact. Deterg.14 (2011) 563–576. 10.1007/s11743-011-1261-8Suche in Google Scholar
29. Sharma K. and ChauhanS.: Effect of biologically active amino acids on the surface activity and micellar properties of industrially important ionic surfactants, Colloids Surf. A453 (2014) 78–85. 10.1016/j.colsurfa.2014.04.003Suche in Google Scholar
30. Zana R. : Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir12 (1996) 1208–1211. 10.1021/la950691qSuche in Google Scholar
31. Hoeiland H. K.S. and BlokhusA. M.: Handbook of Surface and Colloid Chemistry, 3rd ed., Taylor and Frances Group, LLC, London (2009).Suche in Google Scholar
32. Nagarajan R. and WangC.: Theory of surfactant aggregation in water/ethylene glycol mixed solvents, Langmuir16 (2000) 5242–5251. 10.1021/la9910780Suche in Google Scholar
33. Das S. , MondalS. and GhoshS.: Physicochemical studies on the micellization of cationic, anionic and nonionic surfactants in water-polar organic solvent mixtures, J. Chem. Eng. Data58 (2013) 2586–2595. 10.1021/je4004788Suche in Google Scholar
34. Rosen M. J. : Surfactants and Interfacial Phenomena, 3rd ed., Wiley-InterscienceHoboken: NJ (2004). 10.1002/0471670561Suche in Google Scholar
35. Ruiz C. C. : Thermodynamics of micellization tetradecyltrimethylammonium bromide in ethylene glycol-water binary mixtures, Colloid Polym. Sci.277 (1999) 701–707. 10.1007/s003960050443Suche in Google Scholar
36. Myers D. : Surfactants Science and Technology, 2nd ed., VCH, New York (1992).Suche in Google Scholar
37. Ali A. , FarooqU., UzairS. and PatelR.: Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium. J. Mol. Liq.223 (2016) 589–602. 10.1016/j.molliq.2016.08.082Suche in Google Scholar
38. Gordon J. E. : Organic Chemistry of Electrolyte Solutions (Interscience Monographs on Chemistry- Organic Chemistry Section). Wiley Interscience, New York (1975).Suche in Google Scholar
39. Rodríguez A. , GracianiM. M., AnguloM. and MoyáM. L.: Effects of organic solvent addition on the aggregation and micellar growth of cationic dimeric surfactant 12-3-12,2Br−, Langmuir23 (2007) 11496–11505. 10.1021/la702293dSuche in Google Scholar
40. Robinson R. A. and StokesR. H.: Electrolyte Solutions. Butterworths, London (1970).Suche in Google Scholar
41. Ali A. , TariqM., PatelR. and IttooF. A.: Interaction of glycine with cationic, anionic and nonionic surfactants at different temperatures: a volumetric, viscometric, refractive index, conductometric and fluorescence probe study, Colloid Polym. Sci.286 (2008) 183–190. 10.1007/s00396-007-1750-5Suche in Google Scholar
42. Ali A. , BhushanV. and BidhuriP.: Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures, J. Mol. Liq.177 (2013) 209–214. 10.1016/j.molliq.2012.10.004Suche in Google Scholar
43. Wadi R. K. and GoyalR. K.: Temperature dependence of apparent molar volumes and viscosity B-coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35°C, J. Solut. Chem.21 (1992) 163–170. 10.1007/BF00647005Suche in Google Scholar
44. Yan Z. , WangJ., KongK. W. and LuJ.: Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions, Fluid Phase Equilib.215 (2004) 143–150. 10.1016/j.fluid.2003.07.001Suche in Google Scholar
45. Hossain M. F. , BiswasT. K., IslamM. N. and HuqueM. E.: Volumetric and viscometric studies of dodecyltrimethylammonium bromide in aqueous and in aqueous amino acid solutions in premicellar region, Monatsh. Chem.141 (2010) 1297–1308. 10.1007/s00706-010-0402-5Suche in Google Scholar
46. Jones G. and DoleM.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc.51 (1929) 2950–2960. 10.1021/ja01385a012Suche in Google Scholar
47. Falkenhagen H. and DoleM.: Die innere reibung von elektrolytis-chen und ihre deutung nach der debeschen theorie. Z. Physik30 (1992) 611–622.Suche in Google Scholar
48. Erdey-Gruz T. : Transport Phenomena in Aqueous Solutions. Akademiai Kiado, Budapest (1974).Suche in Google Scholar
49. Feakins D. , FreemantleD. J. and LawrenceK. G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol+water systems, J. Chem. Soc. Faraday Trans.70 (1974) 795–806. 10.1039/F19747000795Suche in Google Scholar
50. Feakins D. , BatesF. M., WaghorneW. E. and LawrenceK. G.: Relative viscosities and quasi-thermodynamics of solutions of tert-butyl alcohol in the methanol-water systems, J. Chem. Soc. Faraday Trans.89 (1993) 3381–3388. 10.1039/FT9938903381Suche in Google Scholar
51. Galsstone S. , LaidlerK. J. and EryingH.: The Theory of Rate Processes. McGraw Hill, New York (1941).Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants