Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
-
Shili Song
, Yabing Han , Wenli Hao , Jingwen Lu und Yuhua Qian
Abstract
A cationic choline-derived surfactant with photolabile cinnamate counterion (tetradecyl-(2-hydroxyethyl)-dimethylammoniumcinnamate, C14HDACin) was synthesized. The properties of C14HDACin aqueous solutions for pre- or post-UV irradiation were investigated by employing tensiometry, conductance, transmission electron microscopy (TEM) and rheometry. The effect of UV irradiation time on photoisomerization of C14HDACin solutions was evaluated, which showed that the photoisomerization efficiency decreases with an increase of C14HDACin concentration. After UV irradiation, the fraction of counterion binding (β) of the C14HDACin micelle decreases. However, the value of CMC increases. Rheometry coupled with TEM studies confirmed that the aggregation of C14HDACin could transform from wormlike to spherical micelles upon UV irradiation.
Kurzfassung
Es wurde ein kationisches Cholin-Derivat-Tensid einem fotolabilen Zimtsäureester-Gegenion (Tetradecyl-(2-hydroxyethyl)-dimethylammoniumcinnamat, C14HDACin) synthetisiert. Die Eigenschaften von wässrigen C14HDACin-Lösungen vor und nach der UV-Bestrahlung wurden tensiometrisch, über die Leitfähigkeit, mit der Transmissionselektronenmikroskopie (TEM) und der Rheometrie bestimmt. Der Einfluss der UV-Strahlungsdauer auf die Fotoisomerisation von C14HDACin-Lösungen wurde bewertet, wobei sich zeigte, dass die Wirksamkeit der Fotoisomerisation bei steigender C14HDACin-Konzentration abnimmt. Nach der UV-Bestrahlung ist der Anteil der Gegenionbindung (β) der C14HDACin-Mizellen gefallen. Jedoch, die CMC nimmt ebenfalls ab. Rheometrische Messungen in Verbindung mit den TEM-Untersuchungen bestätigen, dass durch die UV-Strahlung die wurmartigen C14HDACin-Mizellen sich zu Kugelmizellen umwandeln können.
References
1. Panfili, G., Manzi, P., Compagnone, D., Scarciglia, L. and Palleschi, G.: Rapid assay of choline in foods using microwave hydrolysis and a choline biosensor, J. Agric. Food Chem.48(8) (2000) 3047–3403. 10.1021/jf990803+Suche in Google Scholar PubMed
2. Zaloga, G.P. and Bortenschlager, M. D.: Vitamins, in: ZalogaG.P. (Ed.), Nutrition in Critical Care, Mosby-Year Book, St. Louis, MO (1994).Suche in Google Scholar
3. Blusztajn, J. K. and Wurtman, R. J.: Choline and cholinergic neurons, Science221 (1983) 614–620. 10.1126/science.6867732Suche in Google Scholar PubMed
4. Blusztajn, J. K.: Choline, a Vital Amine, Science281(5378) (1998) 794–795. 10.1126/science.281.5378.794Suche in Google Scholar PubMed
5. Domańska, U. and Bogel-Łukasik, R.: Physic Chemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide, J. Phys. Chem. B.109(24) (2005) 12124–12132. 10.1021/jp058015cSuche in Google Scholar PubMed
6. Domańska, U. and Bogel-Łukasik, R.: Solubility of ethyl-(2-hydroxyethyl)-dimethyl ammonium bromide in alcohols (C2–C12), Fluid Phase Equilib. 233 (2005) 220–227. 10.1016/j.fluid.2005.05.015Suche in Google Scholar
7. Domańska, U., Bogel-Łukasik, E. and Bogel-Łukasik, R.: 1-Ctanol/water partition coefficients of 1alkyl-3-methylimidazolium chloride, Chem. Eur. J.9(13) (2003) 3033–3041. 10.1002/chem.200204516Suche in Google Scholar
8. Modaressi, A., Sifaoui, H., Grzesiak, B., Solimando, R., Domanska, U. and Rogalski, M.: CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductometric studies, Colloids Surf. A: Physic Chem. Eng. Aspects.296 (2007) 104–108. 10.1016/j.colsurfa.2006.09.031Suche in Google Scholar
9. Song, S. L., Fu, P., Wang, Y. F., Wang, Z. and Qian, Y. H.: Investigation on the behavior of choline-derived cationic surfactant in aqueous solution in the absence and presence of PdCl2, Colloids and Surfaces A: Physic Chem. Eng. Aspects.399 (2012) 100–107. 10.1016/j.colsurfa.2012.02.042Suche in Google Scholar
10. Hassan, P. A., Candau, S. J., Kern, F. and Manohar, C.: Rheology of wormlike micelles with varying hydrophobicity of the counterion, Langmuir14(21) (1998) 6025–6029. 10.1021/la980335iSuche in Google Scholar
11. Göbel, S. and Hiltrop, K.: Influence of organic counterions on the structure of lyotropic mesophases, Progr Colloid Polym Sci.84 (1991) 241–242. 10.1007/BFb0115973Suche in Google Scholar
12. (a) Bijma, K. and Engberts, J. B. F. N.: Effect of Counterions on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts, Langmuir13(18) (1997) 4843–4849. Bijma, K., Blandamer, M. and Engberts, J. B. F. N.: Effect of Counterions and headgroup hydrophobicity on properties of micelles formed by alkylpyridinium surfactants. 2. micr Calorimetry, Langmuir 14(1) (1998) 79–83. 10.1021/la970216nSuche in Google Scholar
13. Zhao, M. W., Yan, Z. H., Dai, C. L., Du, M. Y., Li, H., Zhao, Y. R., Wang, K. and DingQ.F.: Formation and rheological properties of wormlike micelles by N-hexadecyl-N-methylpiperidinium bromide and sodium salicylate, Colloid Polym Sci.293(4) (2015) 1073–1082. 10.1007/s00396-014-3495-2Suche in Google Scholar
14. Srinivasa, R. and Kaler, R. E. W.: Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails, Langmuir17(2) (2001) 300–306. 10.1021/la0007933Suche in Google Scholar
15. Dong, B., Zhang, J., Zheng, L. Q., Wang, S. Q., Li, X. W. and Inoue, T.: Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution, J. Colloid Interface Sci.319 (2008) 338–343. 10.1016/j.jcis.2007.11.040Suche in Google Scholar PubMed
16. Rao, U. R. K., Manohart, C., Valaulikar, B. S. and Iyer, R. M.: Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions, J. Phys. Chem.91(12) (1987) 3286–3291. 10.1021/j100296a036Suche in Google Scholar
17. Brown, W., Johansson, K. and Almgren, M.: Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering, J. Phys. Chem.93(15) (1989) 5889–5894. 10.1021/j100352a047Suche in Google Scholar
18. Ezrahi, S., Tuval, E. and Aserin, A.: Properties, main applications and perspectives of worm micelles, Adv. Colloid Interface Sci.128 (2006) 77–102. 10.1016/j.cis.2006.11.017Suche in Google Scholar PubMed
19. Hubbard, F. P. J. and Abbott, N. L.: Handbook of Hydrogen Energy, in: R.Zana, E. W.Kaler (Eds.), Giant Micelles, CRC Press, 2007, pp. 375.Suche in Google Scholar
20. Wolff, T., Emming, C. S., Suck, T. A. and Buenau, G. V.: Photorheological effects in micellar solutions containing anthracene derivatives: a rheological and static low angle light scattering study, J. Phys. chem.93(12) (1989) 4894–4898. 10.1021/j100349a043Suche in Google Scholar
21. Sakai, H., Orihara, Y., Kodashima, H., Matsumura, A., Ohkubo, T., Tsuchiya, K. and Abe, M.: Photoinduced reversible change of fluid viscosity, J. Am. Chem. S C.127(39) (2005) 13454–3455. 10.1021/ja053323Suche in Google Scholar
22. Long, J., Tian, S. L., Niu, Y. H., Li, G. and Ning, P.: Reversible solubilization of typical polycyclic aromatic hydr Carbons by a photoresponsive surfactant, Colloids and Surfaces A: Physic Chem. Eng. Aspects454 (2014) 172–179. 10.1016/j.colsurfa.2014.04.033Suche in Google Scholar
23. Yan, H., Long, Y., Song, K., Tung, C. H. and Zheng, L. Q.: Photo-induced transformation from wormlike to spherical micelles based on pyrrolidinium ionic liquids, Soft Matter10(1) (2014) 115–121. 10.1039/c3sm52346bSuche in Google Scholar PubMed
24. Baglioni, P., Braccalenti, E., Carretti, E., Germani, R., Goracci, L., Savelli, G. and Tiecco, M.: Surfactant-based photorheological fluids: effect of the surfactant structure, Langmuir25(10) (2009) 5467–5475. 10.1021/la900465hSuche in Google Scholar PubMed
25. Ketner, A. M., Kumar, R., Davies, T. S., ElderP.W. and Raghavan, S. R.: A Simple class of photorheological fluids: surfactant solutions with viscosity tunable by light, J. Am. Chem. S C.129 (2007) 1553–1559. 10.1021/ja065053gSuche in Google Scholar PubMed
26. Sakai, H., Taki, S., Tsuchiya, K., Matsumura, A., Sakai, K. and Abe, M.: Phot Chemical control of viscosity using sodium cinnamate as a photoswitchable molecule, Chem. Lett.41 (2012) 247–248. 10.1246/cl.2012.247Suche in Google Scholar
27. Takagi, K., Itoh, M., Usami, H., Ima, T. and Sawaki, Y.: Organized photodimerization of unsaturated carboxylates. Selectivity control by normal and reversed micelles, J. Chem. S C. Perkin Trans.2 (1994) 1003–1009. 10.1039/P29940001003Suche in Google Scholar
28. Yang, J., Wang, H. Y., Wang, J. J., Zhang, Y. and Zhou, J. G.: Highly efficient conductivity modulation of cinnamate-based light-responsive ionic liquids in aqueous solutions, Chem. Commun.50(95) (2014) 14979–14982. 10.1039/C4CC04274CSuche in Google Scholar
29. Davies, T. S., Ketner, A. M. and Raghavan, S. R.: Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating, J. Am. Chem. S C.128(20) (2006) 6669–6675. 10.1021/ja060021eSuche in Google Scholar PubMed
30. Sakai, K., Umezawa, S., Tamura, M., Takamatsu, Y., Tsuchiya, K., Torigoe, K., Ohkubo, T., Yoshimuira, T., Esumi, K., Sakai, H. and Abe, M.: Adsorption and micellization behavior of novel gluconamide- type gemini surfactants, J. Colloid Interface Sci.318(2) (2008) 440–448. 10.1016/j.jcis.2007.10.039Suche in Google Scholar PubMed
31. Harkins, W. D. and Brown, F. E.: The determination of surface tension (free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method, J. Am. Chem. S C.4(1) (1919) 499–524. 10.1021/ja01461a003Suche in Google Scholar
32. Deleu, M., Paquet, M. and Blecker, C.: Encyclopedia of Surface and Colloid Science, in: T. A.Hubbard (Ed.), Dekker, New York, 2002, pp. 5119.Suche in Google Scholar
33. Shang, T. G., Smith, K. A. and Hatton, T. A.: Photoresponsive surfactants exhibiting unusually large, reversible surface tension changes under varying illumination conditions, Langmuir19(26) (2003) 10764–10773. 10.1021/la0350958Suche in Google Scholar
34. Amalia, R., María, M. G., Gaspar, F. and María, L. M.: Effects of glycols on the thermodynamic and micellar properties of TTAB in water, J. Colloid Interface Sci.338 (2009) 207–215. 10.1016/j.jcis.2009.06.005Suche in Google Scholar PubMed
35. Wang, H. Y., Zhang, L. M., Wang, J. J., LiZ.Y. and Zhang, S. J.: The first evidence for unilamellar vesicle formation of ionic Liquids in Aqueous Solutions, Chem. Commun.49 (2013) 5222–5224. 10.1039/c3cc41908hSuche in Google Scholar PubMed
36. Vlachy, N., Drechsler, M., Verbavatz, Jean-M., Touraud, D. and Kunz, W.: Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition, J. Colloid Interface Sci.319 (2008) 542–548. 10.1016/j.jcis.2007.11.048Suche in Google Scholar PubMed
37. Mandeep, S. B.: How surfactants control crystal growth of nanomaterials, Cryst. Growth Des.16 (2016) 1104–1133. 10.1021/acs.cgd.5b01465Suche in Google Scholar
38. Mandeep, S. B., Kulbir, S. and Jasmeet, S.: Characterization of mixed micelles of cationic twin tail surfactants with phospholipids using fluorescence spectroscopy, J. Colloid Interface Sci.297 (2006) 284–291. 10.1016/j.jcis.2005.10.034Suche in Google Scholar PubMed
39. Turro, N. J. and Yekta, A.: Luminescent probes for detergent solutions. A simple pr Cedure for determination of the mean aggregation number of micelles, J. Am. Chem. S C.100(18) (1978) 5951–5952. 10.1021/ja00486a062Suche in Google Scholar
40. Warr, G. G., Zemb, T. and Drifford, M.: Liquid-liquid phase separation in cationic micellar solutions, J. Phys. Chem.94(7) (1990) 3086–3092. 10.1021/j100370a063Suche in Google Scholar
41. Lin, Y. Y., Cheng, X. H., Qiao, Y., Yu, C. L., Li, Z. B. and Yan, Y.: Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch, Soft Matter6 (2010) 902–908. 10.1039/B916721HSuche in Google Scholar
42. Ozawa, R. and Hamaguchi, H.: Does photoisomerization pr Ceed in an ionic liquid?Chem. Lett.30 (2001) 736–737. 10.1246/cl.2001.736Suche in Google Scholar
43. Chakrabarty, D., Chakraborty, A., Hazra, P., Seth, D. and Sarkar, N.: Dynamics of photoisomerization and rotational relaxation of 3,3-diethyloxadicarb Cyanine iodide in room temperature ionic liquid and binary mixture of ionic liquid and water, Chem. Phys. Lett.397 (2004) 216–221. 10.1016/.cplett.2004.08.109Suche in Google Scholar
44. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct-frame-top.cgiSuche in Google Scholar
45. Vermathen, M., Stiles, P., Bachofer, S. J. and Simonis, U.: Investigations of monofluoro-substituted benzoates at the tetradecyltrimethylammonium micellar interface, Langmuir18(4) (2002) 1030–1042. 10.1021/la9765Suche in Google Scholar
46. Hayashita, T., Kurosawa, T., Miyata, T., Tanaka, K. and Igawa, M.: Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution, Colloid Polym Sci.272(12) (1994) 1611–1619. 10.1007/BF00664729Suche in Google Scholar
47. Shi, H. F., Ge, W., Oh, H., Pattison, S. M., Huggins, J. T., Talmon, Y., Hart, D. J., Raghavan, S. R. and Zakin, J. L.: Photoreversible micellar solution as a smart drag- Reducing fluid for use in district heating/cooling systems, Langmuir29(1) (2013) 102–109. 10.1021/la304001rSuche in Google Scholar PubMed
48. Khatory, A., Lequeux, F., Kern, F. and Candau, S. J.: Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high-salt content, Langmuir9 (1993)1456–1464. 10.1021/la00030a005Suche in Google Scholar
49. Chu, Z. L. and Feng, Y. J.: Thermo-switchable surfactant gel, Chem. Commun.47(25) (2011) 7191–7193. 101039/c1cc11428jSuche in Google Scholar
50. Karlson, L., Nilsson, S. and Thuresson, K.: Rheology of an aqueous solution of an end-capped poly (ethylene glycol) polymer at high concentration, Colloid Polym. Sci.277(8) (1999) 798–804. 1007/s003960050454Suche in Google Scholar
51. Srinivasa, P. A. H., Raghavan, R. and Kaler, E. W.: Microstructural changes in SDS micelles induced by hydrotropic salt, Langmuir18(7) (2002) 2543–2548. 10.1021/la011435iSuche in Google Scholar
52. Noyce, D. S., King, P. A., Kirby, F. B. and Reed, W. L.: The kinetics of the Acid-catalyzed isomerization of cis-Cinnamic Acid, J. Am. Chem. S C.84(9) (1962) 1632–1635. 10.1021/ja00868a025Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Review of the Year 2016
- Review
- Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
- Biosurfactants/Novel Surfactants
- Distribution Coefficients of Lipopeptide Biosurfactant in Different Solvents and its Separation from a Surfactant/Polymer Mixture in Aqueous Solutions
- Synthesis and Surface Properties of Anionic Vinylguaiacol Based Surfactants
- Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template
- Environmental Chemistry
- Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage
- Physical Chemistry
- Preparation and Characterization of a Humate Surfactant with Hydroxymethylation and Esterification Modification of Lignite
- Properties of Cationic Choline-Derived Surfactant with Photolabile Cinnamate Counterion
- Micellar Catalysis
- Solvent-Free Acetalization of Glycerol with n-Octanal using Combined Brønsted Acid-Surfactant Catalyst
- Synthesis
- Purification, Analysis and Surfactant Synthesis of Waste Cooking Oil
- Application
- Preparation and Properties of Novel Asymmetric Gemini Alkyl Polyglycosides
- Synthesis and Properties of Esterquats as Antibacterial Agent and Fabric Softener