Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents
-
Hendrik Hellmuth
Abstract
Enzymes and surfactants are both essential ingredients that determine the performance of modern laundry detergents. We have conducted an investigation of the interaction of surfactants and enzymes under laundry detergent application conditions in order to understand the influence of individual ingredients and to optimize detergent performance. We can show that for a given protease enzyme, individual surfactants in a constant detergent matrix have a significant impact on relevant stability and performance parameter. While certain anionic surfactants like e.g. linear alkylbenzene sulfonate show strong protease inactivation, nonionic surfactants did only show slight inactivation over time. On the other hand, proteolytic performance of protease on test stains was most driven by fatty alcohol ether sulfate. Knowledge about the impact of individual surfactants on proteases will enable the best choice of ingredients for mixed surfactant systems with optimized enzyme performance and stability.
Kurzfassung
Enzyme und Tenside sind essentielle Bestandteile, die die Leistung moderner Waschmittel mitbestimmen. Es wurde eine Untersuchung der Wechselwirkungen von Tensiden und Enzymen unter den typischen Anwendungsbedingungen von Waschmitteln durchgeführt, um zu klären wie sich die individuellen Inhaltsstoffe auf die Waschleistung auswirken. Es zeigt sich, dass für eine gegebene Protease individuelle Tenside in einer konstanten Waschmittelmatrix einen deutlichen Einfluss auf relevante Stabilitäts- und Leistungsparameter haben. Während bestimmte anionische Tenside wie lineares Alkylbenzolsulfonat starke Inaktivierung der Protease bewirken, zeigen nichtionische Tenside im Laufe der Zeit nur geringe Inaktivierung. Die proteolytische Leistung der Protease auf Testflecken wird am stärksten von Fettalkoholethersulfat beeinflusst. Die Kenntnis der Effekte einzelner Tenside auf Protease ermöglicht die Auswahl der am besten geeigneten Inhaltstoffe gemischter Tensidsysteme mit optimaler Enzymstabilität und Waschleistung.
References
1. v. Rybinski, W. and Nordskog, A.: Physical Chemistry of the Washing Process, in: Smulders, E. (Ed.), Laundry Detergents, Wiley-VCH, Weinheim (2007). 10.1002/14356007.a08_315.pub2Search in Google Scholar
2. Hauthal, H. G. and Wagner, G.: Chemie beim Spülen, Schrubben und Waschen: Reinigungs- und Pflegemittel im Haushalt. Chemie, Anwendung, Ökologie, Verbrauchersicherheit, Nachrichten aus der Chemie52 (2004) 55. 10.1002/nadc.20040520120Search in Google Scholar
3. Almog, O., Gallagher, D. T., LadnerJ.E., Strausberg, S., Alexander, P., Bryan, P. and Gilliland, G. L.: Structural Basis of Thermostability, JBC30 (2002) 27553–27558. 10.1074/jbc.M111777200Search in Google Scholar
4. Scheidgen, A. and Meier, F.: Of Powders and Pouches – Detergent Innovations, Trends and Challenges, SÖFW Journal139 (2013) 2–8.Search in Google Scholar
5. Lange, R. K.: Detergents and Cleaners – A Handbook for Formulators, Hanser Verlag (1994). 10.1002/star.19950471114Search in Google Scholar
6. Herbots, I., Kottwitz, B., Reilly, P. J., Antrim, R. L., Burrows, H., Lenting, H. B. M., Viikari, L., Suurnäkki, A., Niku-Paavola, M.-L., Pere, J. and Buchert, J.: Enzymes – Non-food Application, in: Ullmann's Encyclopedia of Industrial Chemisty, Wiley-VCH, Weinheim (2012). 10.1002/14356007.m09_m03Search in Google Scholar
7. Maurer, K.-H.: Detergent proteases, Current Opinion in Biotechnology15 (2004) 330–334. 10.1016/j.copbio.2004.06.005Search in Google Scholar
8. Maurer, K.-H.: Detergent proteases, in: Grunwald, P. (Ed.), Industrial Biocatalysis, Pan Stanford, Singapore (2015). 10.4032/9789814463898Search in Google Scholar
9. Dreja, M., Vockenroth, I., Plath, N., Schneider, C. and Martinez, M.: Formulation, Performance and Sustainability Aspects of Liquid Laundry Detergents, Tenside Surfactants Detergents51 (2014) 108–112. 10.3139/113.110289Search in Google Scholar
10. Olsen, H.S. and Falholt, P.: The role of enzymes in modern detergency, Journal of Surfactants and Detergents1 (1998) 555–567. 10.1007/s11743-998-0058-7Search in Google Scholar
11. Otzen, D. E. R.: Protein Unfolding in Detergents: Effect of Micelle Structure, Ionic Strength, pH, and Temperature, Biophysical Journal83 (2002) 2219–2230. 10.1016/S0006-3495(02)73982-9Search in Google Scholar
12. Otzen, D. E. R.: Protein-surfactant interactions: A tale of many states, Biochimica et Biophysica Acta1814 (2011) 562–591. 10.1016/j.bbapap.2011.03.003Search in Google Scholar PubMed
13. Kravetz, L. and Guin, K. F.: Effect of Surfactant Structure on Stability of Enzymes Formulated into Laundry Liquids, Surfactants & Detergents62 (1985) 943–949. 10.1007/BF02541765Search in Google Scholar
14. Zhang, J. and Zhang, J.: Study on the interaction of alkaline protease with main surfactants in detergent, Colloid Polym Sci294 (2015) 247–255. 10.1007/s00396-015-3777-3Search in Google Scholar
15. Stoner, M. R., Dale, D. A., Gualfetti, P. J., Becker, T., Manning, M. C., Carpenter, J. F. and Randolph, T. W.: Protease autolysis in heavy-duty liquid detergent formulations: Effects of thermodynamic stabilizers and protease inhibitors, Enzyme and Microbial Technology34 (2004) 114–125. 10.1016/j.enzmictec.2003.09.008Search in Google Scholar
16. Russel, G. L. and Britton, L. N.: Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants, Journal of Surfactants and Detergents5 (2002) 5–10. 10.1007/s11743-002-0198-9Search in Google Scholar
17. Szogyi, M. and Cserhati, T: Nonionic tensides modify papain structure and proteolytic activity, Acta Biotechnologica10 (1990) 85–92. 10.1002/abio.370100122Search in Google Scholar
18. Barberis, S., Quiroga, E., Barcia, C. and Liggieri, C.: Effect of laundry detergent formulation on the performance of alkaline phytoproteases, Electronic Journal of Biotechnology16 (2013). 10.2225/vol16-issue3-fulltext-1Search in Google Scholar
19. Krupa, J. C. and Mort, J. S.: Optimization of detergents for the assay of cathepsins B, L, S, and K, Analytical Biochemistry283 (2000) 99–103. 10.1006/abio.2000.4621Search in Google Scholar PubMed
20. Ezgimen, M. D., Mueller, N. H., Teramoto, T. and Padmanabhan, R.: Effects of detergents on the West Nile virus protease activity, Bioorganic and Medicinal Chemistry17 (2009) 3278–3282. 10.1016/j.bmc.2009.03.050Search in Google Scholar PubMed PubMed Central
21. Holtin, K., Tachikawa, K., Hildebrand, C. and Kolano, C.: Enzyme compatibility with nonionic surfactants in liquid laundry detergents, H&PC Today9 (2014) 38–41.Search in Google Scholar
22. Weikl, T. R. and Paul, F.: Conformational selection in protein binding and function, Protein Science23 (2014) 1508–1518. 10.1002/pro.2539Search in Google Scholar PubMed PubMed Central
23. Goddette, D. W., Paech, C., Yang, S. S. and Mielenz, J. R.: The Crystal Structure of the Bacillus lentus Alkaline Protease, Subtilisin BL, at 1.4 Å Resolution, J. Mol. Biol228 (1992) 580–595. 10.1016/0022-2836(92)90843-9Search in Google Scholar
24. DelMar, E. G., Largman, C., Brodrick, J. W. and Geokas, M. C.: A sensitive new substrate for chymotrypsin, Analytical Biochemistry99 (1979) 316–320. 10.1016/S0003-2697(79)80013-5Search in Google Scholar
25. Verbeek, H., Van Raay, H. G. and Saran, H.: Zur Bestimmung der proteolytischen Aktivität in Enzymkonzentraten und enzymhaltigen Wasch-, Spül- und Reinigungsmitteln, Tenside7 (1970) 125–132.Search in Google Scholar
26. http://www.aise.eu/downloads/2_AISEDetergentTestProtocole_2009_TEMPLATEMATERIAL_ENGLISH_FULLSET.zip.Search in Google Scholar
27. Sadana, A. and Henley, J. P.: Mechanistic Analysis of Complex Enzyme Deactivations: Influence of Various Parameters on Series-type Inactivations, Biotechnology and Bioengineering28 (1986) 977–987. 10.1002/bit.260280708Search in Google Scholar PubMed
© 2016, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review
- Water and Energy Consumption in Domestic Laundering Worldwide – A Review
- Laundry Washing: New Learning and Global Relevance
- Stock Model Based Bottom-up Accounting for Washing Machines: Worldwide Energy, Water and Greenhouse Gas Saving Potentials 2010–2030
- Washing Expectations in Domestic Laundering – Consumer Behavior in Mexico
- Differentiated Evaluation of Washing Performance in Washing Machines of Test Stain Strips as a Function of Temperature, Washing Duration and Load Size
- Textile Quality Depletion due to Household Machine Wash – Ways to Measure and Impacts of Wash Duration and Temperature on Textiles
- New Evaluation Method of Cleaning Performance for Washing Machines
- Wool Wash
- Wool Wash: Technical Performance and Consumer Habits
- Dishwashing
- Potentials and Impacts of Low Temperature Electric Household Dishwashing
- Effects of Relevant Detergent Components on the Cleaning Performance in Low Temperature Electric Household Dishwashing
- Novel Measuring Methods
- Revealing Detergent Efficiency and Mechanism by Real-Time Measurement Using a Novel and Tailored QCM-D methodology
- Hygiene
- Microbicidal Action of Heat, Detergents and Active Oxygen Bleach as Components of Laundry Hygiene
- Detergents
- Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review
- Water and Energy Consumption in Domestic Laundering Worldwide – A Review
- Laundry Washing: New Learning and Global Relevance
- Stock Model Based Bottom-up Accounting for Washing Machines: Worldwide Energy, Water and Greenhouse Gas Saving Potentials 2010–2030
- Washing Expectations in Domestic Laundering – Consumer Behavior in Mexico
- Differentiated Evaluation of Washing Performance in Washing Machines of Test Stain Strips as a Function of Temperature, Washing Duration and Load Size
- Textile Quality Depletion due to Household Machine Wash – Ways to Measure and Impacts of Wash Duration and Temperature on Textiles
- New Evaluation Method of Cleaning Performance for Washing Machines
- Wool Wash
- Wool Wash: Technical Performance and Consumer Habits
- Dishwashing
- Potentials and Impacts of Low Temperature Electric Household Dishwashing
- Effects of Relevant Detergent Components on the Cleaning Performance in Low Temperature Electric Household Dishwashing
- Novel Measuring Methods
- Revealing Detergent Efficiency and Mechanism by Real-Time Measurement Using a Novel and Tailored QCM-D methodology
- Hygiene
- Microbicidal Action of Heat, Detergents and Active Oxygen Bleach as Components of Laundry Hygiene
- Detergents
- Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents