Home Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents
Article
Licensed
Unlicensed Requires Authentication

Understanding Interactions of Surfactants and Enzymes: Impact of Individual Surfactants on Stability and Wash Performance of Protease Enzyme in Detergents

  • Hendrik Hellmuth and Michael Dreja
Published/Copyright: August 27, 2016
Become an author with De Gruyter Brill

Abstract

Enzymes and surfactants are both essential ingredients that determine the performance of modern laundry detergents. We have conducted an investigation of the interaction of surfactants and enzymes under laundry detergent application conditions in order to understand the influence of individual ingredients and to optimize detergent performance. We can show that for a given protease enzyme, individual surfactants in a constant detergent matrix have a significant impact on relevant stability and performance parameter. While certain anionic surfactants like e.g. linear alkylbenzene sulfonate show strong protease inactivation, nonionic surfactants did only show slight inactivation over time. On the other hand, proteolytic performance of protease on test stains was most driven by fatty alcohol ether sulfate. Knowledge about the impact of individual surfactants on proteases will enable the best choice of ingredients for mixed surfactant systems with optimized enzyme performance and stability.

Kurzfassung

Enzyme und Tenside sind essentielle Bestandteile, die die Leistung moderner Waschmittel mitbestimmen. Es wurde eine Untersuchung der Wechselwirkungen von Tensiden und Enzymen unter den typischen Anwendungsbedingungen von Waschmitteln durchgeführt, um zu klären wie sich die individuellen Inhaltsstoffe auf die Waschleistung auswirken. Es zeigt sich, dass für eine gegebene Protease individuelle Tenside in einer konstanten Waschmittelmatrix einen deutlichen Einfluss auf relevante Stabilitäts- und Leistungsparameter haben. Während bestimmte anionische Tenside wie lineares Alkylbenzolsulfonat starke Inaktivierung der Protease bewirken, zeigen nichtionische Tenside im Laufe der Zeit nur geringe Inaktivierung. Die proteolytische Leistung der Protease auf Testflecken wird am stärksten von Fettalkoholethersulfat beeinflusst. Die Kenntnis der Effekte einzelner Tenside auf Protease ermöglicht die Auswahl der am besten geeigneten Inhaltstoffe gemischter Tensidsysteme mit optimaler Enzymstabilität und Waschleistung.


*Correspondence address, Dr. Michael Dreja, Henkel AG & Co. KGaA, Henkelstraße 67, 40589 Düsseldorf, Germany, Tel.: +49-2117975592, Fax: +49-21179815592, E-Mail:

Dr. Michael Dreja (born in 1970) studied chemistry at the University of Cologne, Germany and obtained his PhD in 1998 in physical chemistry with a thesis on polymerization in microemulsions. After postdoctoral research at the University of Washington, Seattle, he joined the Corporate Research department of Henkel KGaA in 1999. He worked in various positions in product development, including 2 years with the Dial Corporation – A Henkel Company in Scottsdale, AZ, USA. Since 2011, he is heading the International Research in Henkel's R&D Laundry & Home Care business. He is author of 50+ patents and a board member of the subgroup “Chemie des Waschens” in the German Chemical Society (GDCh).

Dr. Hendrik Hellmuth (born in 1978) studied biotechnology at the University of Braunschweig, Germany and obtained his PhD in 2008 with Prof. J. Seibel and Prof. K. Buchholz. He worked at Henkel AG & Co. KGaA in the Corporate Research department and later in the International Research group of the Laundry & Home Care department where he took care of enzyme design and characterization. Since late 2013, he was responsible for the development and performance testing of new surfactant raw materials for laundry and home care products. As of April 2016, he is employed with AB Enzymes GmbH in Darmstadt, Germany.


References

1. v. Rybinski, W. and Nordskog, A.: Physical Chemistry of the Washing Process, in: Smulders, E. (Ed.), Laundry Detergents, Wiley-VCH, Weinheim (2007). 10.1002/14356007.a08_315.pub2Search in Google Scholar

2. Hauthal, H. G. and Wagner, G.: Chemie beim Spülen, Schrubben und Waschen: Reinigungs- und Pflegemittel im Haushalt. Chemie, Anwendung, Ökologie, Verbrauchersicherheit, Nachrichten aus der Chemie52 (2004) 55. 10.1002/nadc.20040520120Search in Google Scholar

3. Almog, O., Gallagher, D. T., LadnerJ.E., Strausberg, S., Alexander, P., Bryan, P. and Gilliland, G. L.: Structural Basis of Thermostability, JBC30 (2002) 2755327558. 10.1074/jbc.M111777200Search in Google Scholar

4. Scheidgen, A. and Meier, F.: Of Powders and Pouches – Detergent Innovations, Trends and Challenges, SÖFW Journal139 (2013) 28.Search in Google Scholar

5. Lange, R. K.: Detergents and Cleaners – A Handbook for Formulators, Hanser Verlag (1994). 10.1002/star.19950471114Search in Google Scholar

6. Herbots, I., Kottwitz, B., Reilly, P. J., Antrim, R. L., Burrows, H., Lenting, H. B. M., Viikari, L., Suurnäkki, A., Niku-Paavola, M.-L., Pere, J. and Buchert, J.: Enzymes – Non-food Application, in: Ullmann's Encyclopedia of Industrial Chemisty, Wiley-VCH, Weinheim (2012). 10.1002/14356007.m09_m03Search in Google Scholar

7. Maurer, K.-H.: Detergent proteases, Current Opinion in Biotechnology15 (2004) 330334. 10.1016/j.copbio.2004.06.005Search in Google Scholar

8. Maurer, K.-H.: Detergent proteases, in: Grunwald, P. (Ed.), Industrial Biocatalysis, Pan Stanford, Singapore (2015). 10.4032/9789814463898Search in Google Scholar

9. Dreja, M., Vockenroth, I., Plath, N., Schneider, C. and Martinez, M.: Formulation, Performance and Sustainability Aspects of Liquid Laundry Detergents, Tenside Surfactants Detergents51 (2014) 108112. 10.3139/113.110289Search in Google Scholar

10. Olsen, H.S. and Falholt, P.: The role of enzymes in modern detergency, Journal of Surfactants and Detergents1 (1998) 555567. 10.1007/s11743-998-0058-7Search in Google Scholar

11. Otzen, D. E. R.: Protein Unfolding in Detergents: Effect of Micelle Structure, Ionic Strength, pH, and Temperature, Biophysical Journal83 (2002) 22192230. 10.1016/S0006-3495(02)73982-9Search in Google Scholar

12. Otzen, D. E. R.: Protein-surfactant interactions: A tale of many states, Biochimica et Biophysica Acta1814 (2011) 562591. 10.1016/j.bbapap.2011.03.003Search in Google Scholar PubMed

13. Kravetz, L. and Guin, K. F.: Effect of Surfactant Structure on Stability of Enzymes Formulated into Laundry Liquids, Surfactants & Detergents62 (1985) 943949. 10.1007/BF02541765Search in Google Scholar

14. Zhang, J. and Zhang, J.: Study on the interaction of alkaline protease with main surfactants in detergent, Colloid Polym Sci294 (2015) 247255. 10.1007/s00396-015-3777-3Search in Google Scholar

15. Stoner, M. R., Dale, D. A., Gualfetti, P. J., Becker, T., Manning, M. C., Carpenter, J. F. and Randolph, T. W.: Protease autolysis in heavy-duty liquid detergent formulations: Effects of thermodynamic stabilizers and protease inhibitors, Enzyme and Microbial Technology34 (2004) 114125. 10.1016/j.enzmictec.2003.09.008Search in Google Scholar

16. Russel, G. L. and Britton, L. N.: Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants, Journal of Surfactants and Detergents5 (2002) 510. 10.1007/s11743-002-0198-9Search in Google Scholar

17. Szogyi, M. and Cserhati, T: Nonionic tensides modify papain structure and proteolytic activity, Acta Biotechnologica10 (1990) 8592. 10.1002/abio.370100122Search in Google Scholar

18. Barberis, S., Quiroga, E., Barcia, C. and Liggieri, C.: Effect of laundry detergent formulation on the performance of alkaline phytoproteases, Electronic Journal of Biotechnology16 (2013). 10.2225/vol16-issue3-fulltext-1Search in Google Scholar

19. Krupa, J. C. and Mort, J. S.: Optimization of detergents for the assay of cathepsins B, L, S, and K, Analytical Biochemistry283 (2000) 99103. 10.1006/abio.2000.4621Search in Google Scholar PubMed

20. Ezgimen, M. D., Mueller, N. H., Teramoto, T. and Padmanabhan, R.: Effects of detergents on the West Nile virus protease activity, Bioorganic and Medicinal Chemistry17 (2009) 32783282. 10.1016/j.bmc.2009.03.050Search in Google Scholar PubMed PubMed Central

21. Holtin, K., Tachikawa, K., Hildebrand, C. and Kolano, C.: Enzyme compatibility with nonionic surfactants in liquid laundry detergents, H&PC Today9 (2014) 3841.Search in Google Scholar

22. Weikl, T. R. and Paul, F.: Conformational selection in protein binding and function, Protein Science23 (2014) 15081518. 10.1002/pro.2539Search in Google Scholar PubMed PubMed Central

23. Goddette, D. W., Paech, C., Yang, S. S. and Mielenz, J. R.: The Crystal Structure of the Bacillus lentus Alkaline Protease, Subtilisin BL, at 1.4 Å Resolution, J. Mol. Biol228 (1992) 580595. 10.1016/0022-2836(92)90843-9Search in Google Scholar

24. DelMar, E. G., Largman, C., Brodrick, J. W. and Geokas, M. C.: A sensitive new substrate for chymotrypsin, Analytical Biochemistry99 (1979) 316320. 10.1016/S0003-2697(79)80013-5Search in Google Scholar

25. Verbeek, H., Van Raay, H. G. and Saran, H.: Zur Bestimmung der proteolytischen Aktivität in Enzymkonzentraten und enzymhaltigen Wasch-, Spül- und Reinigungsmitteln, Tenside7 (1970) 125132.Search in Google Scholar

26. http://www.aise.eu/downloads/2_AISEDetergentTestProtocole_2009_TEMPLATEMATERIAL_ENGLISH_FULLSET.zip.Search in Google Scholar

27. Sadana, A. and Henley, J. P.: Mechanistic Analysis of Complex Enzyme Deactivations: Influence of Various Parameters on Series-type Inactivations, Biotechnology and Bioengineering28 (1986) 977987. 10.1002/bit.260280708Search in Google Scholar PubMed

Received: 2016-03-30
Revised: 2016-05-20
Published Online: 2016-08-27
Published in Print: 2016-09-15

© 2016, Carl Hanser Publisher, Munich

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110447/html
Scroll to top button