Home The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions
Article
Licensed
Unlicensed Requires Authentication

The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions

  • Zulfiqar Ali Raza
Published/Copyright: July 9, 2015
Become an author with De Gruyter Brill

Abstract

The deposition of material at the edge of an evaporating droplet is known as the coffee ring effect. This phenomenon is widespread in various colloidal and bacterial systems. The study has examined the self-assembly and deposition of colloidal rhamnolipid (a natural surfactant) structures on a glass surface. The effects of the rhamnolipid concentration, pH and the addition of cations on the deposition formation and the alteration in coffee ring effect were studied by using in-vitro scanning electron microscope observation. Above the critical micelle concentration, a transition from ring-like deposition to dispersed deposition is observed. Whereas upon the addition of cations, the multi-distribution of aggregates size enhances the non-homogeneity of the drying film and consequently results in multi-nucleation of rhamnolipid aggregates.

Kurzfassung

Die Materialablagerung an dem Rand eines verdampfenden Tropfens kennt man als „Kaffee-Ring“-Effekt. Dieses Phänomen ist in vielen kolloidalen und bakteriellen System weit verbreitet. In dieser Untersuchung wurden die Selbstorganisation und die Abscheidung von kolloidalen Rhamnolipidstrukturen (einem natürlichem Tensid) auf einer Glasoberfläche untersucht. Der Einfluss der Rhamnolipidkonzentration, des pH-Werts und die Zugabe von Kationen auf die Entstehung der Ablagerung und die Veränderung des “Kaffee-Ring”-Effekts wurden mittels der in-vitro-Rasterelektronenmikroskopie untersucht. Oberhalb der kritischen Mizellenbildungskonzentration wurde ein Übergang von der ringförmigen zur feinverteilten Ablagerung beobachtet. Während der Zugabe von Kationen verbesserte die Multi-Verteilung der Aggregatgröße die Nicht-Homogenität des getrockneten Films und daraus resultierte eine Mehrfachkeimbildung der Rhamnolipidaggregate.


*Correspondence address, Dr. Zulfiqar Ali Raza, Chemistry Research Laboratory, Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan, Tel.: +92 41 9230081, Fax: +92 41 9230098;, E-Mail:

Dr. Zulfiqar Ali Raza is working as Associate Professor of Chemistry and Deputy Director R&D at the National Textile University, Faisalabad. He has numerous research papers in his credit in the journals of international repute. He has presented his research work at several national and international conferences. He is life member of Chemical Society of Pakistan and honorary referee of several international science journals


References

1. Hu, H. and Larson, R. G.: Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B106 (2002) 13341344. 10.1021/jp0118322Search in Google Scholar

2. Kaya, D., Belyi, V. A. and Muthukumar, M.: Pattern formation in drying droplets of polyelectrolyte and salt, J. Chem. Phys.133 (2010) 114905. 10.1063/1.3493687Search in Google Scholar PubMed

3. Byun, M., Han, W., Qiu, F., Bowden, N. B. and Lin, Z.: Hierarchically ordered structures enabled by controlled evaporative self-assembly, Small6 (2010) 22502255. 10.1002/smll.201000816Search in Google Scholar PubMed

4. Javid, A., Raza, Z. A., Hussain, T. and Rehman, A.: Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric, J. Microencapsulation31 (2014) 461468. 10.3109/02652048.2013.879927Search in Google Scholar PubMed

5. Kinge, S., Crego-Calama, M. and Reinhoudt, D. N.: Self-assembling nanoparticles at surfaces and interfaces, Chem. Phys. Chem.9 (2008) 2042. 10.1002/cphc.200700475Search in Google Scholar PubMed

6. Larson, R. G.: Re-shaping the coffee ring. Angew. Chem. Int. Ed.51 (2012) 25462548. 10.1002/anie.201108008Search in Google Scholar PubMed

7. Park, J. and Moon, J.: Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing, Langmuir22 (2006) 35063513. 10.1021/la053450jSearch in Google Scholar PubMed

8. Yauk, C. L. and Berndt, M. L.: Review of the literature examining the correlation among DNA microarray techniques, Environ. Mol. Mutagen.48 (2007) 380394. 10.1002/em.20290Search in Google Scholar PubMed PubMed Central

9. Weon, B. M. and Je, J. H.: Capillary force repels coffee-ring effect, Phys. Rev. E82 (2010) 015305R. 10.1103/PhysRevE.82.015305Search in Google Scholar PubMed

10. Yunker, P. J., Still, T., Lohr, M. A. and Yodh, A. G.: Suppression of the coffee-ring effect by shape-dependent capillary interactions, Nature476 (2011) 308311. 10.1038/nature10344Search in Google Scholar PubMed

11. Sefiane, K.: Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment, J. Coll. Interface Sci.272 (2004) 411419. 10.1016/j.jcis.2003.10.039Search in Google Scholar PubMed

12. Deegan, R. D.: Pattern formation in drying drops, Phys. Rev. E61 (2000) 475485. 1063-651X/2000/61(1)/475(11)/$15.00Search in Google Scholar

13. Kajiya, T., Kobayashi, W., Okuzono, T. and Doi, M.: Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants, J. Phys. Chem. B113 (2009) 1546015466. 10.1021/jp9077757Search in Google Scholar PubMed

14. Still, T., Yunker, P. J. and Yodh, A.: G. Surfactant-induced Marangoni eddies alter coffee-rings of evaporating colloidal drops, Langmuir28 (2012) 49844988. 10.1021/la204928mSearch in Google Scholar PubMed

15. Sanchez, M., Aranda, F. J., Espuny, M. J. et al.: Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media, J. Coll. Interface Sci.307 (2007) 246253. 10.1016/j.jcis.2006.11.041Search in Google Scholar PubMed

16. Champion, J. T., Gilkey, J. C., Lamparski, H. et al.: Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane, J. Coll. Interface Sci.170 (1995) 569574. 10.1006/jcis.1995.1136Search in Google Scholar

17. Raza, Z. A., Khalid, Z. M., Khan, M. S., Banat, I. M., Rehman, A., Naeem, A. and Saddique, M. T.: Surface properties and subsurface aggregate assimilation of rhamnolipid surfactants in different aqueous systems, Biotechnol. Lett.32 (2010) 811816. 10.1007/s10529-010-0216-xSearch in Google Scholar PubMed

18. Hu, H. and Larson, R. G.: Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B110 (2006) 7090–7094. 10.1021/jp0609232Search in Google Scholar PubMed

19. Shmuylovich, L., Shen, A. Q. and Stone, H. A.: Surface morphology of drying latex films: multiple ring formation, Langmuir18 (2002) 34413445. 10.1021/la011484vSearch in Google Scholar

20. Fischer, B. J.: Particle convection in an evaporating colloidal droplet, Langmuir18 (2002) 6067. 10.1021/la015518aSearch in Google Scholar

21. Ishigami, Y., Gama, Y., Fumiyoshi, I. et al.: Colloid chemical effect of polar head moieties of a rhamnolipid-type biosurfactant, Langmuir9 (1993) 16341636. 10.1021/la00031a006Search in Google Scholar

22. Raza, Z. A., Rehman, A., Hussain, M. T., Masood, R., Haq, A., Saddique, M. T., JavidA. and Ahmad, N.: Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric, Carbohyd. Res.391 (2014) 97105. 10.1016/j.carres.2014.03.009Search in Google Scholar PubMed

Received: 2014-07-02
Accepted: 2015-03-05
Published Online: 2015-07-09
Published in Print: 2015-07-15

© 2015, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110381/html
Scroll to top button