Home Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
Article
Licensed
Unlicensed Requires Authentication

Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants

  • Zhongli Peng , Haiping Deng and Hongyan Chen
Published/Copyright: September 25, 2014
Become an author with De Gruyter Brill

Abstract

To improve the hydrolysis resistant ability (HRA) of ionic trisiloxane surfactants, three novel ionic twin-tail trisiloxane surfactants have been synthesized. Their formulas are of (R)2N+(CH3)2I (A), (R)2N(CH2)3SO3Na+ (B) and (R)2N+ (I) (CH3)(CH2)3SO3Na+ (C) [R = Me3SiOSiMe(CH2)3OSiMe3], respectively. Their structures were characterized by ESI-MS, 1H-NMR and 13C-NMR spectroscopy. The surface activity and hydrolysis resistance of the synthesized ionic twin-tail trisiloxane surfactants are significantly better than that of the ionic single-tail analogue surfactants. The critical aggregation concentration (CAC) values of these ionic twin-tail trisiloxane surfactants are at levels of 10−6∼10−5 mol L−1 and the surface tension (γ) values of their aqueous solutions at CAC are below 21.0 mN m−1. The γ values of the aqueous solutions of anionic trisiloxane surfactant B and zwitterionic trisiloxane surfactant C are still less than 21 mN m−1 after having been placed in alkaline environment (pH 10.0) for 29 days. However, the spreading ability (SA) of their aqueous solutions on low-energy solid surfaces is not as good as that of the nonionic twin-tail trisiloxane surfactants previously prepared by us. By weight loss methods the cationic trisiloxane surfactant A was confirmed to be able to use as a corrosion inhibitor. The structure and surface area per molecule (asm) of zwitterionic surfactant C were also discussed.

Kurzfassung

Mit dem Ziel, den Hydrolysewiderstand (hydrolysis resistant ability (HRA)) ionischer Trisiloxantenside zu verbessern, wurden drei neue ionische Trisiloxantenside mit doppelter Kohlenstoffkette synthetisiert. Ihre chemischen Formeln lauten: (R)2N+(CH3)2I (A), (R)2N(CH2)3SO3Na+ (B) und (R)2N+ (I) (CH3)(CH2)3SO3Na+ (C) [R = Me3SiOSiMe(CH2)3OSiMe3]. Ihre Strukturen wurden mittels ESI-MS, 1H-NMR- und 13C-NMR-Spektroskopie bestimmt. Die Oberflächenaktivität und der Hydrolysewiderstand der synthetisierten ionischen Trisiloxantenside sind signifikant besser als die der ionischen Analoga mit einfacher Kohlenstoffkette. Die kritische Aggregations-Konzentration (CAC) dieser neuen Tenside liegt in der Größenordnung von 10−6∼10−5 mol L−1 und die Oberflächenspannung bei der CAC (γ) ist kleiner als 21.0 mN m−1. Die γ-Werte der wässrigen, alkalischen Lösungen (pH = 10,0) des anionischen Trisiloxantensids B und des zwitterionischen Tensids C liegen nach 29 Tagen immer noch unterhalb von 21 mN m−1. Jedoch die Fähigkeit zur Spreitung (spreading ability (SA)) der wässrigen Lösungen auf niedrig energetischen Oberflächen ist nicht so gut wie die der von uns synthetisierten nicht-ionischen doppelkettigen Trisiloxantenside. Mittels Messungen des Gewichtsverlusts wurde das kationische Trisiloxantensid A als Korrosionsinhibitor bestätigt. Struktur und der Oberflächenplatzbedarf pro Molekül (asm) des zwitterionischen Tensids C wurden ebenfalls diskutiert.


* Correspondence address Mr. Prof. Dr. Zhongli Peng, Department of Chemical Engineering, Huizhou University, Huizhou 516007 P.R. China. Tel.: 86-752-2527229, Fax: 86-752-2527229, E-Mail:

Zhongli Peng is an associate professor of applied chemistry. He received a Ph.D. in Polymer Chemistry and Physics from the School of Chemistry and Chemical Engineering, Sun Yat-sen University, People's Republic of China. He chiefly pursues in the research of organosilicon surfactants and emulsion (or microemulsion) preparation.

Haiping Deng is undergraduates in Huizhou University. His research involves the synthesis and application of organosilicon surfactants.

Hongyan Chen is a lecture in Huizhou University. She received a Ph.D. in Chemical Engineering from South China University of Technology, People's Republic of China. She chiefly pursues in the research of the synthesis of fine chemicals.


References

1. Snow, A. S.: Synthesis, characterization, stability, aqueous surface activity and aqueous solution aggregation of the novel, cationic siloxane surfactants (Me3SiO)2Si(Me)(CH2)+NMe2(CH2)ORX(R = H, C(O)Me, C(O)NH(Ph); X = Cl, Br, NO3, MeOSO3), Langmuir9 (1993) 424430. DOI: 10.1021/la00026a011Search in Google Scholar

2. Snow, A. S., Fenton, W. N. and Owen, M. J.: Zwitterionic organofunctional siloxanes as aqueous surfactants: synthesis and characterization of betaine functional siloxanes and their comparison to sulfobetane functional siloxanes, Langmuir7 (1991) 868871. DOI: 10.1021/la00053a009Search in Google Scholar

3. Snow, S. A., Fenton, W. N. and Owen, M. J.: Synthesis and characterization of zwitterionic silicone sulfobetain surfactants, Langmuir9 (1990) 385391. DOI: 10.1021/la00092a017Search in Google Scholar

4. Halverson, J. D., Maldarelli, C., Couzis, A. and Koplik, J.: Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions, Chem. Eng. Sci.64 (2009) 46574667. DOI: 10.1016/j.ces.2009.05.010Search in Google Scholar

5. Bonnington, L. S., Henderson, W. and Zabkiewicz, J. A.: Characterization of synthetic and commercial trisiloxane surfactant materials, Appl. Organometal Chem.18 (2004) 2838. DOI: 10.1002/aoc.563Search in Google Scholar

6. Rose, M. R. and Prokai, B.: Method of extinguishing fires and compositions therefor containing cationic silicone surfactants, U.S. Patent 3 677 347 (1972).Search in Google Scholar

7. He, M., Lin, Z., Scriven, L. E., Davis, H. T. and Snow, S. A.: Aggregation behavior and microstructure of cationic trisiloxane surfactants in aqueous solutions, J. Phys. Chem.98 (1994) 61486157. DOI: 10.1021/j100075a018Search in Google Scholar

8. Hill, R. M.: Superspreading, Curr. Opin. Colloid Interface Sci.3 (1998) 247254. DOI: 10.1016/S1359-0294(98)80068-XSearch in Google Scholar

9. Viravau, V. and Aires, C.: Cosmetic composition comprising at least one organosilicon compound, at least one anionic surfactant and at least one nonionic thickener, and process using the composition, U.S. Patent 2 011 155 163 (2011).Search in Google Scholar

10. Leatherman, M. D., Policello, G. A., and Rajaraman, S. K.: Hydrolysis resistant organomodified disiloxane surfactants, U.S. Patent 2 007 088 091 (2007).Search in Google Scholar

11. Policello, G. A., Leatherman, M. D., Peng, W., Rajaraman, S. K. and Xia, Z. J.: Hydrolysis resistant organomodified trisiloxane surfactants, U.S. Patent 2 007 184 005 (2007).Search in Google Scholar

12. Leatherman, M. D., Policello, G. A., Peng, W., Zhang, L., Wagner, R., Rajaraman, S. K. and Xia, Z. J.: Hydrolysis resistant organomodified triisiloxane ionic surfactants, U.S. Patent 2 009 176 893 (2009).Search in Google Scholar

13. Peng, Z., Wu, Q., Gao, H., Cai, T. and Chen, K.: Syntheses and properties of hydrolysis resistant twin-tail trisiloxane surfactants, Colloid Surface A342 (2009) 127131. DOI: 10.1016/j.colsurfa.2009.04.028Search in Google Scholar

14. Peng, Z., Lu, C. and Lai, J.: Synthesis and properties of novel double-tail trisiloxane surfactants. J Surfact Deterg12 (2009) 331336. DOI: 10.1007/s11743-009-1134-6Search in Google Scholar

15. Peng, Z., Lu, C. and Xu, M.: Influence of substructures on the spreading ability and hydrolysis resistance of double-tail trisiloxane surfactants. J. Surfact Deterg.13 (2010) 7581. DOI: 10.1007/s11743-009-1144-4Search in Google Scholar

16. Peng, Z., Huang, J., Chen, F., Ye, Q. and Li, Q.: Syntheses and properties of ethoxylated double-tail trisiloxane surfactants containing a propanetrioxy spacer, Appl. Organometal Chem.25 (2011) 383389. DOI: 10.1002/aoc.1775Search in Google Scholar

17. Zhang, G.-D., Han, F. and Zhang, G.-Y.: Synthesis and interfacial properties of a new family trisiloxanes, Acta Chim. Sinica64 (Chinese) (2006) 12051208. DOI: 10.6023/A0603211Search in Google Scholar

18. Peng, Z.-L., Wu, Q., Wang, Y.-L. and Yang, S.-T.: Synthesis, properties, and application of novel silane-modified polyoxyethylene ether surfactants, J. Surfact. Deterg.7 (2004) 277283. DOI: 10.1007/s11743-004-0312-zSearch in Google Scholar

19. Ritacco, H. A., Ortega, F., Rubio, R. G., Ivanova, N. and StarovV. M.: Equilibrium and dynamic surface properties of trisiloxane aqueous solutions Part 1. Experimental results, Colloid Surface A365 (2010) 199203. DOI: 10.1016/j.colsurfa.2010.01.053Search in Google Scholar

20. Peng, Z., Huang, S. and Cao, M.: Synthesis and properties of novel double-tail trisiloxane surfactants with high spreadingability, J. Surfact. Deterg.14 (2011) 521528. DOI: 10.1007/s11743-011-1274-3Search in Google Scholar

Received: 2013-10-06
Revised: 2014-04-03
Published Online: 2014-09-25
Published in Print: 2014-09-15

© 2014, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110326/html
Scroll to top button