Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
-
Zhongli Peng
Abstract
To improve the hydrolysis resistant ability (HRA) of ionic trisiloxane surfactants, three novel ionic twin-tail trisiloxane surfactants have been synthesized. Their formulas are of (R)2N+(CH3)2I− (A), (R)2N(CH2)3SO3−Na+ (B) and (R)2N+ (I)− (CH3)(CH2)3SO3−Na+ (C) [R = Me3SiOSiMe(CH2)3OSiMe3], respectively. Their structures were characterized by ESI-MS, 1H-NMR and 13C-NMR spectroscopy. The surface activity and hydrolysis resistance of the synthesized ionic twin-tail trisiloxane surfactants are significantly better than that of the ionic single-tail analogue surfactants. The critical aggregation concentration (CAC) values of these ionic twin-tail trisiloxane surfactants are at levels of 10−6∼10−5 mol L−1 and the surface tension (γ) values of their aqueous solutions at CAC are below 21.0 mN m−1. The γ values of the aqueous solutions of anionic trisiloxane surfactant B and zwitterionic trisiloxane surfactant C are still less than 21 mN m−1 after having been placed in alkaline environment (pH 10.0) for 29 days. However, the spreading ability (SA) of their aqueous solutions on low-energy solid surfaces is not as good as that of the nonionic twin-tail trisiloxane surfactants previously prepared by us. By weight loss methods the cationic trisiloxane surfactant A was confirmed to be able to use as a corrosion inhibitor. The structure and surface area per molecule (asm) of zwitterionic surfactant C were also discussed.
Kurzfassung
Mit dem Ziel, den Hydrolysewiderstand (hydrolysis resistant ability (HRA)) ionischer Trisiloxantenside zu verbessern, wurden drei neue ionische Trisiloxantenside mit doppelter Kohlenstoffkette synthetisiert. Ihre chemischen Formeln lauten: (R)2N+(CH3)2I− (A), (R)2N(CH2)3SO3−Na+ (B) und (R)2N+ (I−) (CH3)(CH2)3SO3−Na+ (C) [R = Me3SiOSiMe(CH2)3OSiMe3]. Ihre Strukturen wurden mittels ESI-MS, 1H-NMR- und 13C-NMR-Spektroskopie bestimmt. Die Oberflächenaktivität und der Hydrolysewiderstand der synthetisierten ionischen Trisiloxantenside sind signifikant besser als die der ionischen Analoga mit einfacher Kohlenstoffkette. Die kritische Aggregations-Konzentration (CAC) dieser neuen Tenside liegt in der Größenordnung von 10−6∼10−5 mol L−1 und die Oberflächenspannung bei der CAC (γ) ist kleiner als 21.0 mN m−1. Die γ-Werte der wässrigen, alkalischen Lösungen (pH = 10,0) des anionischen Trisiloxantensids B und des zwitterionischen Tensids C liegen nach 29 Tagen immer noch unterhalb von 21 mN m−1. Jedoch die Fähigkeit zur Spreitung (spreading ability (SA)) der wässrigen Lösungen auf niedrig energetischen Oberflächen ist nicht so gut wie die der von uns synthetisierten nicht-ionischen doppelkettigen Trisiloxantenside. Mittels Messungen des Gewichtsverlusts wurde das kationische Trisiloxantensid A als Korrosionsinhibitor bestätigt. Struktur und der Oberflächenplatzbedarf pro Molekül (asm) des zwitterionischen Tensids C wurden ebenfalls diskutiert.
References
1. Snow, A. S.: Synthesis, characterization, stability, aqueous surface activity and aqueous solution aggregation of the novel, cationic siloxane surfactants (Me3SiO)2Si(Me)(CH2)+NMe2(CH2)ORX−(R = H, C(O)Me, C(O)NH(Ph); X = Cl, Br, NO3, MeOSO3), Langmuir9 (1993) 424–430. DOI: 10.1021/la00026a011Search in Google Scholar
2. Snow, A. S., Fenton, W. N. and Owen, M. J.: Zwitterionic organofunctional siloxanes as aqueous surfactants: synthesis and characterization of betaine functional siloxanes and their comparison to sulfobetane functional siloxanes, Langmuir7 (1991) 868–871. DOI: 10.1021/la00053a009Search in Google Scholar
3. Snow, S. A., Fenton, W. N. and Owen, M. J.: Synthesis and characterization of zwitterionic silicone sulfobetain surfactants, Langmuir9 (1990) 385–391. DOI: 10.1021/la00092a017Search in Google Scholar
4. Halverson, J. D., Maldarelli, C., Couzis, A. and Koplik, J.: Wetting of hydrophobic substrates by nanodroplets of aqueous trisiloxane and alkyl polyethoxylate surfactant solutions, Chem. Eng. Sci.64 (2009) 4657–4667. DOI: 10.1016/j.ces.2009.05.010Search in Google Scholar
5. Bonnington, L. S., Henderson, W. and Zabkiewicz, J. A.: Characterization of synthetic and commercial trisiloxane surfactant materials, Appl. Organometal Chem.18 (2004) 28–38. DOI: 10.1002/aoc.563Search in Google Scholar
6. Rose, M. R. and Prokai, B.: Method of extinguishing fires and compositions therefor containing cationic silicone surfactants, U.S. Patent 3 677 347 (1972).Search in Google Scholar
7. He, M., Lin, Z., Scriven, L. E., Davis, H. T. and Snow, S. A.: Aggregation behavior and microstructure of cationic trisiloxane surfactants in aqueous solutions, J. Phys. Chem.98 (1994) 6148–6157. DOI: 10.1021/j100075a018Search in Google Scholar
8. Hill, R. M.: Superspreading, Curr. Opin. Colloid Interface Sci.3 (1998) 247–254. DOI: 10.1016/S1359-0294(98)80068-XSearch in Google Scholar
9. Viravau, V. and Aires, C.: Cosmetic composition comprising at least one organosilicon compound, at least one anionic surfactant and at least one nonionic thickener, and process using the composition, U.S. Patent 2 011 155 163 (2011).Search in Google Scholar
10. Leatherman, M. D., Policello, G. A., and Rajaraman, S. K.: Hydrolysis resistant organomodified disiloxane surfactants, U.S. Patent 2 007 088 091 (2007).Search in Google Scholar
11. Policello, G. A., Leatherman, M. D., Peng, W., Rajaraman, S. K. and Xia, Z. J.: Hydrolysis resistant organomodified trisiloxane surfactants, U.S. Patent 2 007 184 005 (2007).Search in Google Scholar
12. Leatherman, M. D., Policello, G. A., Peng, W., Zhang, L., Wagner, R., Rajaraman, S. K. and Xia, Z. J.: Hydrolysis resistant organomodified triisiloxane ionic surfactants, U.S. Patent 2 009 176 893 (2009).Search in Google Scholar
13. Peng, Z., Wu, Q., Gao, H., Cai, T. and Chen, K.: Syntheses and properties of hydrolysis resistant twin-tail trisiloxane surfactants, Colloid Surface A342 (2009) 127–131. DOI: 10.1016/j.colsurfa.2009.04.028Search in Google Scholar
14. Peng, Z., Lu, C. and Lai, J.: Synthesis and properties of novel double-tail trisiloxane surfactants. J Surfact Deterg12 (2009) 331–336. DOI: 10.1007/s11743-009-1134-6Search in Google Scholar
15. Peng, Z., Lu, C. and Xu, M.: Influence of substructures on the spreading ability and hydrolysis resistance of double-tail trisiloxane surfactants. J. Surfact Deterg.13 (2010) 75–81. DOI: 10.1007/s11743-009-1144-4Search in Google Scholar
16. Peng, Z., Huang, J., Chen, F., Ye, Q. and Li, Q.: Syntheses and properties of ethoxylated double-tail trisiloxane surfactants containing a propanetrioxy spacer, Appl. Organometal Chem.25 (2011) 383–389. DOI: 10.1002/aoc.1775Search in Google Scholar
17. Zhang, G.-D., Han, F. and Zhang, G.-Y.: Synthesis and interfacial properties of a new family trisiloxanes, Acta Chim. Sinica64 (Chinese) (2006) 1205–1208. DOI: 10.6023/A0603211Search in Google Scholar
18. Peng, Z.-L., Wu, Q., Wang, Y.-L. and Yang, S.-T.: Synthesis, properties, and application of novel silane-modified polyoxyethylene ether surfactants, J. Surfact. Deterg.7 (2004) 277–283. DOI: 10.1007/s11743-004-0312-zSearch in Google Scholar
19. Ritacco, H. A., Ortega, F., Rubio, R. G., Ivanova, N. and StarovV. M.: Equilibrium and dynamic surface properties of trisiloxane aqueous solutions Part 1. Experimental results, Colloid Surface A365 (2010) 199–203. DOI: 10.1016/j.colsurfa.2010.01.053Search in Google Scholar
20. Peng, Z., Huang, S. and Cao, M.: Synthesis and properties of novel double-tail trisiloxane surfactants with high spreadingability, J. Surfact. Deterg.14 (2011) 521–528. DOI: 10.1007/s11743-011-1274-3Search in Google Scholar
© 2014, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Special Theme: Green Surfactants – Synthesis, Properties, Performance and Application
- Novel Cationic Gemini Surfactants and Methods for Determination of Their Antimicrobial Activity – Review
- Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant
- Rhamnolipids Production by a Pseudomonas eruginosa LBI Mutant: Solutions and Homologs Characterization
- Application of Biosurfactant Surfactin on Copper Ion Removal from Sand Surfaces with Continuous Flushing Technique
- Synthesis and Properties of a Series of CO2 Switchable Gemini Imidazolium Surfactants
- Phase Behavior and Solubilization of Microemulsion Systems Containing Imidazolium Type Surfactant CnmimBr and Butyric Acid as Cosurfactant
- Synthesis and Solution Properties of New Polysiloxane Bola Surfactants Containing Carbohydrate
- Syntheses and Properties of Novel Ionic Twin-tail Trisiloxane Surfactants
- Micellar Encapsulation of Some Polycyclic Aromatic Hydrocarbons by Glucose Derived Non-Ionic Gemini Surfactants in Aqueous Medium
- Environmental Chemistry
- Removal of Non-Ionic Surfactants in an Activated Sludge Sewage Treatment Plant
- Cleaning Technology
- Impact of Artificial UV-Light on Optical and Protective Effects of Cotton After Washing with Detergent Containing Fluorescent Compounds
- Simulating Consumer-Like Air Drying of Dishes via Thermal Drying Process