Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media
-
Ankita Basu
, Sumanta K. Ghosh , Rumpa Saha , Aniruddha Ghosh , Kakali Mukherjee and Bidyut Saha
Abstract
Chromic acid oxidation of D-mannitol to mannose has been studied in aqueous media. The effect of promoter (PA, phen and bpy), micellar catalyst (SDS, TX-100 and CPC) and their combination is studied. All the reactions were performed under the condition [D-mannitol]T ≫ [Cr(VI)]T. All the promoters accelerate the reaction rate and the rate is highest in presence of phen. In absence of a promoter the anionic surfactant SDS increases the rate followed by Triton TX-100. The cationic surfactant CPC retards the reaction in comparison to the reaction in aqueous media. Although phen is the best promoter in absence of any surfactant the catalyst combination of bpy and SDS produce a maximum rate enhancement.
Kurzfassung
Die Chromsäureoxidation von D-Mannitol zu Mannose im wässrigen Medium wurde untersucht. Der Einfluss des Promotors (PA, phen und bpy), des mizellaren Katalysators (SDS, TX-100 und CPC) sowie von Kombinationen daraus wurde studiert. Alle Reaktionen wurden unter der Bedingung, dass [D-mannitol]T ≫ [Cr(VI)]T ist, durchgeführt. Alle Promotoren beschleunigten die Reaktionsgeschwindigkeit, die in Gegenwart von phen am höchsten war. Bei Abwesenheit eines Promotor steigerte das anionische Tensid SDS die Geschwindigkeit, gefolgt von Triton TX-100. Das kationische Tensid CPC hemmte die Reaktion im Vergleich zur Reaktion im wässrigen Medium. Obwohl phen der beste Promotor bei Abwesenheit von Tensiden ist, lieferte die Katalysatorkombination aus bpy und SDS die maximale Geschwindigkeitssteigerung.
References
1. Minkler, S. R. K., Lipshutz, B. H. and Krause, N.: Gold catalysis in micellar systems. Angew. Chem.123 (2011) 7966–7969.Search in Google Scholar
2. Heiba, El-Ahmadi, Dessau, I. and Ralp, M.: Oxidation by metal salts. VII. Syntheses based on the selective oxidation of organic free radicals. J. Am. Chem. Soc.93 (1971) 524–527.Search in Google Scholar
3. Sundaram, S. and Raghavan, P. S.: Chromium-VI Reagents: Synthetic Applications. Springer. (2011).10.1007/978-3-642-20817-1Search in Google Scholar
4. Saha, R., Nandi, R. and Saha, B.: Sources and toxicity of hexavalent chromium. J. Coord. Chem.64 (2011) 1782–1806.10.1080/00958972.2011.583646Search in Google Scholar
5. Saha, B. and Orvig, C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev.254 (2010) 2959–2972.Search in Google Scholar
6. Dwars, T., Paetzold, E. and Oehme, G.: Reaction in micellar system. Angew. Chem.117 (2005) 7338–7364.Search in Google Scholar
7. Seo, S. H., Chang, J. Y. and Tew, G. N.: Self-assembled vesicles from an amphiphilic ortho-phenylene ethynylene macrocycle. Angew. Chem. Int. Ed.45 (2006) 7526–7530.Search in Google Scholar
8. Ryu, J. Y., Hong, D. J. and Lee, M.: Aqueous self-assembly of aromatic rod building blocks. Chem. Commun. (2008) 1043–1054.Search in Google Scholar
9. Mandal, J., Chowdhury, K. M., Paul, K. and Saha, B.: Kinetics and mechanism of 2,2′-bipyridine-catalyzed chromium(VI) oxidation of propan-2-ol in the presence and absence of surfactants. J. Coord. Chem.63 (2010) 99–105.Search in Google Scholar
10. Ghosh, S. K., Basu, A., Paul, K. K. and Saha, B.: Micelle catalyzed oxidation of propan-2-ol to acetone by penta-valent vanadium in aqueous acid media. Mol. Phys.107 (2009) 615–619.Search in Google Scholar
11. Saha, R., Ghosh, A. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. J. Coord. Chem.64 (2011) 3729–3739.Search in Google Scholar
12. Chowdhuri, K. M., Mandal, J. and Saha, B.: Micellar catalysis of chromium(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine in aqueous acid media. J. Coord. Chem.62 (2009) 1871–1878.Search in Google Scholar
13. Islam, M., Saha, B. and Das, A. K.: Kinetics and mechanism of picolinic acid promoted chromic acid oxidation of maleic acid in aqueous micellar media. J. Mol. Catal A: Chem.266 (2007) 21–30.Search in Google Scholar
14. Islam, M., Saha, B. and Das, A. K.: Kinetics and mechanism of 2,2′-bipyridine and 1,10-phenanthroline catalysed chromium(VI) oxidation of D-Fructose in aqueous micellar media. J. Mol. Catal A: Chem.236 (2005) 260–266.Search in Google Scholar
15. Bayen, R., Islam, M., Saha, B. and Das, A. K.: Oxidation of D-glucose in presence of 2,2′-Bipyridine by CrVI in aqueous micellar media: A kinetic study. Carbohydr. Res.340 (2005) 2163–2170.Search in Google Scholar
16. Meenakshisundaram, S. P., Gopalakrishnan, M., Nagarajan, S. and Sarathi, N.: Oxalic acid catalysed chromium (VI) oxidation of some 2-amino-4,6-diarylpyrimidines. Catal. Commun.8 (2007) 713–718.Search in Google Scholar
17. Meenakshisundaram, S. and Markkandan, R.: 1,10-Phenanthroline catalysed HCrO4− oxidation of some substituted trans-cinnamic acids. Trans. Met. Chem.29 (2004) 308–314.Search in Google Scholar
18. Khan, Z., Masan, S. and Kabir, Ud-Din: A mechanistic study of the ethylenediaminetetraacetic acid-, 2,2′-bipyridyl-, and manganese(II)-assisted one-step two- and three-electron oxidation of lactic acid by chromium(VI). Trans. Met. Chem.28 (2003) 881–887.Search in Google Scholar
19. Feigl, F.: Spot Tests in Organic Analysis, 5th ed.; Elsevier Publishing Co.: Amsterdam, 1956; p. 391 (for aldohexose), p. 358 (for aldonic acid).Search in Google Scholar
20. Daier, V., Signorella, S., Rizzotto, M., Frascaroli, M. I., Palopoli, C., Brondino, C., Salas-Peregrin, J. M. and Sala, L. F.: Kinetics and mechanism of the reduction of CrVI to CrIII by D-ribose and 2-deoxy-D-ribose. Can. J. Chem.77 (1999) 57–64.Search in Google Scholar
21. Figgis, B. N.: Introduction to Ligand Fields. Wiley Eastern Limited: New Delhi, India, 1966; p. 222.Search in Google Scholar
22. Jorgensen, C. K.: Absorption spectra and chemical bonding in complexes. Pergamon Press Ltd.: Oxford/London, 1964; p. 290.Search in Google Scholar
23. Islam, M., Saha, B. and Das, A. K.: Chromic acid oxidation of hexitols in the presence of 2,2′-bipyridyl catalyst in aqueous micellar media: A kinetic study, Int J. Chem. Kinet.38 (2006) 531–539.Search in Google Scholar
24. Islam, M., Saha, B. and Das, A. K.: Kinetics and mechanism of picolinic acid promoted chromic acid oxidation of maleic acid in aqueous micellar media. J. Mol. Catal A: Chemical266 (2007) 21–30.Search in Google Scholar
25. Ghosh, S. K., Saha, R., Mukherjee, K., Ghosh, A., Bhattacharyya, S. S. and Saha, B.: Micellar catalysis on 1,10-phenanthroline promoted chromic acid oxidation of propanol in aqueous media. J. Korean Chem. Soc.56 (2012) 164–167.Search in Google Scholar
26. Saha, R., Ghosh, S. K., Ghosh, A., Saha, I., Mukherjee, K., Basu, A. and Saha, B.: Choice of suitable hetero-aromatic nitrogen base as promoter for chromic acid oxidation of dl-mandelic acid in aqueous media at room temperature. Res. Chem. Intermed.39 (2013) 631–643.Search in Google Scholar
© 2013, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Surface and Interfacial Performance of Unsaturated Octadecyl Carboxybetaine
- Synthesis of Thermoresponsive SiO2 Composite Modified by Nonionic Organosilicone Surfactant
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media
- Antimicrobial Efficacy of Hygiene Rinsers under Consumer-Related Conditions
- Environmental Chemistry
- How Effective are Alternative Ways of Laundry Washing?
- Novel Surfactants
- Foaming Behavior of Dialdehyde Starch Schiff-base Derivatives
- Novel Diphenyl Methane Based Quaternary Ammonium Surfactants: Synthesis, Surface Properties and Antimicrobial Activity
- Physical Chemistry
- Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation
- Parametric Optimization and Thermo-dynamic Studies on the Influence of Electrolytes on Sodium Salicylate in Aqueous Solution
- Effect of Cationic Surfactant on the Oxidation of Galactose by N-Bromophthalimide in the Presence of Acidic Medium: A Kinetic and Mechanistic Study
- News
- Retirement of Professor Ulrich Buller
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Surface and Interfacial Performance of Unsaturated Octadecyl Carboxybetaine
- Synthesis of Thermoresponsive SiO2 Composite Modified by Nonionic Organosilicone Surfactant
- Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media
- Antimicrobial Efficacy of Hygiene Rinsers under Consumer-Related Conditions
- Environmental Chemistry
- How Effective are Alternative Ways of Laundry Washing?
- Novel Surfactants
- Foaming Behavior of Dialdehyde Starch Schiff-base Derivatives
- Novel Diphenyl Methane Based Quaternary Ammonium Surfactants: Synthesis, Surface Properties and Antimicrobial Activity
- Physical Chemistry
- Interaction of Cationic CTAB Surfactant with Curcumin, an Anticarcinogenic Drug: Spectroscopic Investigation
- Parametric Optimization and Thermo-dynamic Studies on the Influence of Electrolytes on Sodium Salicylate in Aqueous Solution
- Effect of Cationic Surfactant on the Oxidation of Galactose by N-Bromophthalimide in the Presence of Acidic Medium: A Kinetic and Mechanistic Study
- News
- Retirement of Professor Ulrich Buller