Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
-
Sultan Alam
Abstract
Adsorption kinetics of Cu(II) from aqueous solution by low cost chemically modified saw dust of Morus alba was investigated. The samples were characterized by FT-IR, EDS, BET surface area and Zeta potential technique. The surfaces contain carbonyl and hydroxyl functional groups which act as a binding sites for Cu(II) ion. Adsorption kinetics of Cu(II) was tested by first order kinetics, Elovich and parabolic diffusion kinetic equations which shows that adsorption is a diffusion controlled process. The rate of adsorption was high at high adsorption temperature. Thermodynamic parameters like ΔH°, ΔS° and ΔG° were calculated from the kinetic data.
Kurzfassung
Es wurde die Adsorptionskinetik von Cu(II) aus wässriger Lösung an preiswertem, chemisch modifiziertem Sägemehl des Morus alba untersucht. Die Proben wurden mit Hilfe der FT-IR, EDS, BET-Oberfläche und der Zeta-Potentialtechnik charakterisiert. Die Oberflächen enthalten funktionelle Carbonyl- und Hydroxylgruppen, die Bindungsplätze für die Cu(II)-Ionen darstellen. Die Adsorptionskinetik wurde mit dem Erster-Ordnung- und dem Elovich-Modell sowie mit der parabolischen Diffusionsgleichung, die zeigt, dass die Adsorption ein diffusionskontrollierter Prozess ist, geprüft. Die Adsorptionsgeschwindigkeit was hoch bei hohen Temperaturen. Aus den kinetischen Daten wurden thermodynamische Größen wie ΔH°, ΔS° und ΔG° berechnet.
References
1. Mondal, M. K.: Korean J. Chem. Eng.27 (2010) 144.10.1007/s11814-009-0304-6Suche in Google Scholar
2. Brewer, G. J.: Clin. Neurophysiol.121 (2010) 459.10.1016/j.clinph.2009.12.015Suche in Google Scholar
3. Casarett and Doull's: Toxicology-The Basic Science of Poisons, Fifth Edition, Edited by Curtis D.Klassen, Ph. D., McGraw-Hill, New York (1996) 715.Suche in Google Scholar
4. Casto, B. C., Meyers, J. and DiPaolo, J. A.: Cancer Res.39 (1979) 193.Suche in Google Scholar
5. Demerec, M., Bertani, G. and Flint, A. J.: Am. Natur.85 (1951) 119.10.1086/281660Suche in Google Scholar
6. Gilman, J. P. W.: Metal carcinogenesis. II. Cancer Res.22 (1962) 158.Suche in Google Scholar
7. Carrasco-Martin, F., Mueden, A., CentenoT.A., StoeckliF. and Moreno-Castilla, C.: J. Chem. Soc. Faraday Trans.93 (1997) 2211.10.1039/a608198cSuche in Google Scholar
8. Kandah, M. I.: Sep. Purif. Technol.35 (2004) 61.10.1016/S1383-5866(03)00131-XSuche in Google Scholar
9. Gao, Y. M., Sengupta, A. K. and Simpson, D.: Water Res.29 (1995) 2195.10.1016/0043-1354(95)00040-RSuche in Google Scholar
10. Ali, I. and Gupta, V. K.: Nat. Protoc.1 (2007) 2661.10.1038/nprot.2006.370Suche in Google Scholar
11. Gupta, V. K. and Ali, I.: J. Colloid Interf. Sci.271 (2004) 321.10.1016/j.jcis.2003.11.007Suche in Google Scholar
12. Srivastava, S. K., Gupta, V. K. and Mohan, D.: J. Environ. Eng.123 (1997) 461.10.1061/(ASCE)0733-9372(1997)123:5(461)Suche in Google Scholar
13. Gupta, V. K., Ali, I. and Saini, V. K.: Water Res.41 (2007) 3307.10.1016/j.watres.2007.04.029Suche in Google Scholar PubMed
14. Gupta, V. K., Shrivastava, A. K. and Jain, N.: Water Research35 (2001) 4079.10.1016/S0043-1354(01)00138-5Suche in Google Scholar
15. Gupta, V. K., Mittal, A., Gajbe, V. and Mittal, J.: Ind. Eng. Chem. Res.45 (2006) 1446.10.1021/ie051111fSuche in Google Scholar
16. GuptaV.K., Gupta, M. and Sharma, S.: Water Res.35 (2001) 1125.10.1016/S0043-1354(00)00389-4Suche in Google Scholar
17. Gupta, V. K., Rastogi, A., Dwivedi, M. K. and Mohan, D.: Separ. Sci. Technol.32 (1997) 2883.10.1080/01496399708002227Suche in Google Scholar
18. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L. and Suhas, V. K.: Environ. Sci. Technol.39 (2009) 783.10.1080/10643380801977610Suche in Google Scholar
19. Gupta, V. K. and Ali, I.: Sep. Purif. Technol.18 (2000) 131.10.1016/S1383-5866(99)00058-1Suche in Google Scholar
20. Gupta, V. K. and Rastogi, A.: J. Hazardous Mat.152 (2008) 407.10.1016/j.jhazmat.2007.07.028Suche in Google Scholar PubMed
22. Gupta, V. K., Ali, I. and Saini, V. K.: J. Colloid Interf. Sci.315 (2007) 87.10.1016/j.jcis.2007.06.063Suche in Google Scholar PubMed
23. Gupta, V. K., Rastogi, A., Saini, V. K. and Jain, N.: J. Colloid Interface Sci.296 (2006) 53.10.1016/j.jcis.2005.08.033Suche in Google Scholar PubMed
24. Gupta, V. K. and Rastogi, A.: J. Hazardous Mater.163 (2009) 396.10.1016/j.jhazmat.2008.06.104Suche in Google Scholar PubMed
25. Gupta, V. K. and Rastogi, A.: J. Hazardous Mater.153 (2008) 759.10.1016/j.jhazmat.2007.09.021Suche in Google Scholar PubMed
26. Gupta, V. K. and Rastogi, A.: J. Hazardous Mater.154 (2008) 347.10.1016/j.jhazmat.2007.10.032Suche in Google Scholar PubMed
27. GuptaV.K. and Rastogi, A.: Colloid and Surf. B64 (2008) 170.Suche in Google Scholar
28. Jain, A. K., Gupta, V. K., Sahoo, B. B. and Lok, P.: Anal. Proc. Anal. Commun.32 (1995) 99.10.1039/ai9953200099Suche in Google Scholar
29. Jain, A. K., Gupta, V. K. and Singh, L. P.: Anal. Proc. Anal. Commun.32 (1995) 263.10.1039/ai9953200263Suche in Google Scholar
30. Brunauer, S.: The Adsorption of Gases and Vapors. Princeton University Press (1945).Suche in Google Scholar
32. Yukselen, Y. and Kaya, A.: Water, Air, and Soil Pollution145 (2003) 155.10.1023/A:1023684213383Suche in Google Scholar
33. Laidler, K. L.: Chemical Kinetics. Mc-Graw Hill, New York (1965).Suche in Google Scholar
34. Dogan, M., Alkan, M., Turkyilmaz, A. and Ozdemir, Y.: J. Hazard. Mater. B109 (2004) 141.10.1016/j.jhazmat.2004.03.003Suche in Google Scholar PubMed
35. Aharoni, C., Sideman, S. and Hoffer, E.: J. Chem. Technol. Biotechnol.29 (1979) 404.10.1002/jctb.503290703Suche in Google Scholar
36. Weber, J. W. J. and Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE.89 (SA2) (1963) 31.10.1061/JSEDAI.0000430Suche in Google Scholar
© 2012, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group