Home Preparation and Performance of Catanionic Surfactants
Article
Licensed
Unlicensed Requires Authentication

Preparation and Performance of Catanionic Surfactants

  • Hui-Cheng Yan , Qiu-Xiao Li , Tao Geng , Yajie Jiang and Yi Luo
Published/Copyright: March 1, 2013
Become an author with De Gruyter Brill

Abstract

A series of catanionic surfactants based on the general formula CH3CH2(CH2)11CH2N+(CH3)3 · OOCCH2(CH2)nCH2CH3 (n = 2, 4, 6, 8, 10) were synthesized, and measured their critical micelle concentrations (CMC) and the corresponding surface tension at CMC (γCMC). The results revealed that the surface tensions of water were decreased to 21–34 mN · m−1 when applying these surfactants at a concentration range from 10−3 to 10−4 mol · L−1. Moreover, the performance of foaming, emulsification, anti-static and rewetting of the surfactants were investigated and the results showed that both the rewetting and emulsifying ability of the prepared surfactants were much better than that of conventional surfactants. In addition, the anti-static and foaming properties were also improved at the same condition compared to that of conventional surfactants.

Kurzfassung

Eine Reihe katanionischer Tenside basierend auf der allgemeinen Formel CH3CH2(CH2)11CH2N+(CH3)3 · OOCCH2(CH2)nCH2CH3 (n = 2, 4, 6, 8, 10) wurde synthetisiert und ihre kritischen Mizellbildungskonzentrationen (CMC) und ihre entsprechenden Oberflächenspannungen bei der CMC (γCMC) wurden bestimmt. Die Ergebnisse zeigten, dass die Oberflächenspannung von Wasser auf 21–34 mN m−1 sinkt, wenn die Konzentration der Tenside im Bereich von 10−3 bis 10−4 mol L−1 liegt. Des Weiteren wurde die Leistung der Tenside bei der Schaumbildung, die Emulsionsbildung, der Antistatik, und der Benetzung untersucht. Die Ergebnisse zeigten, dass beides, die Benetzung und die Fähigkeit der Emulsionsbildung der hergestellten Tenside deutlich besser waren als die der konventionellen Tenside. Zusätzlich wurden die antistatischen und die schaumbildenden Eigenschaften bei den gleichen Bedingungen im Vergleich zu den konventionellen Tenside verbessert.


1 Prof. Qiuxiao Li, China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, 030001, Shanxi Province, P. R. China, Tel.: 00 86-351-4046718, Fax: 00 86-351-4040802. E-mail: ,

Hui-cheng Yan was born in 1986. He completed his B.Sc. from Xinzhou Normal University. Presently he is working for Master degree at China Research Institute of Daily Chemical Industry. His research field centered at the synthesis and investigation of quaternary ammonium with new counterions.

Qiu-xiao Li is a professor of China Research Institute of Daily Chemical Industry. His research interests are in the engineering development related to the manufacture of surfactants and in physical chemistry.

Tao Geng is a professor of China Research Institute of Daily Chemical Industry. His research interests are the synthesis and investigation of cationic surfactants.

Yajie Jiang is engineer of China Research Institute of Daily Chemical Industry. Her research interest is synthesis and investigation of novel quaternary ammonium salts.

Yi Luo is senior chemistry engineer of China Research Institute of Daily Chemical Industry.


References

1. Zhao, G. X. and Zhu, B. Y.: Principles of Surfactant Action, China Light Industry Press, Beijing(2003)356.Search in Google Scholar

2. Huang, J. B. and Zhao, G. X.: Colloid Polym Sci.274(1996)747.10.1007/BF00654670Search in Google Scholar

3. Kaler, E. W., Herrington, K. L., Murthy, A. K. and Zasadzinski, J. A. N.: J. Phys. Chem.96(1992)6698.10.1063/1.434660Search in Google Scholar

4. Wang, K., Yin, H. Q., Sha, W., Huang, J. B. and Fu, H. L.: J. Phys. Chem. B.111(2007)12997.10.1021/jp073903oSearch in Google Scholar PubMed

5. Kume, G., Gallotti, M. and Nunes, G.: J Surfact Deterg.11(2008)1.10.1007/s11743-007-1047-1Search in Google Scholar

6. Hao, J. C., Liu, W. M., Xu, G. Y. and Zheng, L. Q.: Langmuir.19(2003)10635.10.1201/9780203910573.ch29Search in Google Scholar

7. Zhang, J., Song, A. X., Li, Z. B., Xu, G. Y. and Hao, J. C.: J. Phys. Chem. B.114(2010)13128.10.1021/jp104579hSearch in Google Scholar PubMed

8. Li, H. G., Jia, X. F., Li, Y., Shi, X. W. and Hao, J. C.: J. Phys. Chem. B.110(2006)68.10.1063/1.474130Search in Google Scholar

9. Tundo, P. and Selva, M.: Acc Chem Res.35(2002)706.10.1021/ar010076fSearch in Google Scholar PubMed

10. Geng, T., Li, Q. X., Jiang, Y. J. and Wang, W.: Fine Chemicals.6(2010)537.Search in Google Scholar

11. Werntz, J. H.: U.S. Patent, 2635100(1953).Search in Google Scholar

12. Xu, M., Zhang, S. Q., Zhuang, Y. J., Tao, Z. S. and Fan, R. F: Surface Active Agents—Measurement of Forming Power—Modifed Ross-Miles Method, GB/T 7462-94(1994).Search in Google Scholar

13. Yang, Q., Cao, D. H. and Fang, B.: Journal of Chemical Engineering of Chinese Universities.23(2009)110.Search in Google Scholar

14. Gu, H. X. and Zhu, C. J.: Determination of Antistatic Performance for Fabric Conditioners, GB/T 16801–1997(1997).Search in Google Scholar

15. Yang, B. Q.: ChemicalIndustry Press, Beijing(2001)1.Search in Google Scholar

16. Wang, F. K. and Wei, F. X.: Journal of Henan Normal University.36(2008)66.Search in Google Scholar

Received: 2011-09-23
Revised: 2012-01-22
Published Online: 2013-03-01
Published in Print: 2012-05-01

© 2012, Carl Hanser Publisher, Munich

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110184/html
Scroll to top button