Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality
-
Burcu Altin
Abstract
The research topics of our group are in general from the field of physical chemistry of colloidal systems. Within this rather wide layout a large variety of quite different questions and systems are tackled, where the common bridging factor is the aim of understanding the properties of colloidal systems based on their mesoscopic structure and dynamics, which in turn are controlled by their molecular composition. With such an enhanced understanding of the correlation between mesoscopic structure and the macroscopic properties the goal then is to employ this knowledge in order to formulate increasingly complex colloidal system with correspondingly more variable and interesting functionalities. From this general context of investigations, some representative systems and questions that have been studied in recent time by us are covered in this text.
They comprise the phase behaviour and the structures formed in solutions of surfactants and amphiphilic copolymers. Once these static properties are known, we also have a high interest in the dynamic properties and the kinetics of morphological transitions as they are observed under non-equilibrium conditions, since they are frequently encountered in applications. A key property of amphiphilic molecules is their ability to solubilise sparingly soluble compounds thereby forming microemulsions or nanoemulsions, where the ability to form such systems depends strongly on the molecular architecture of the amphiphiles. By turning to polymeric amphiphiles the concept of surfactants and their architecture can be extended largely towards more versatile structures, more complex self-assembly and much larger length and time scales. Another direction is the surfactant assisted formation of nanoparticles or mesoporous inorganic materials. By combining copolymers with other polymers, copolymers, colloids, or surfactants – for instance via electrostatically driven co-assembly – one may then form increasingly complex colloidal aggregates. By doing so one is able to control rheological properties or develop complex delivery systems, whose properties can be tailor-made by appropriate choice of the molecular build-up. This striving towards well controlled complexity achieved by means of self- and co-assembly then leads to increasingly more functional systems and is the key direction for future research activities in our group.
Kurzfassung
Die Forschung unseres Arbeitskreises fällt generell in das Feld der Physikalischen Chemie kolloidaler Systeme. Innerhalb dieses ziemlich breiten Gebietes werden recht unterschiedliche Fragen und Systeme betrachtet, wobei der verbindende Faktor das Verständnis kolloidaler Systeme auf der Basis ihrer mesoskopischen Struktur und Dynamik ist, welche wiederum durch ihren molekularen Aufbau bestimmt sind. Basierend auf einem grundlegenden Verständnis der Korrelation zwischen mesoskopischer Struktur und den makroskopischen Eigenschaften ist dann das Ziel, diese Kenntnisse zum Aufbau zunehmend komplexer kolloidaler Systeme mit entsprechend variabler und interessanter Funktionalität einzusetzen. Aus diesem generellen Kontext werden im Folgenden einige repräsentative Systeme und Fragestellungen herausgegriffen und hier kurz beschrieben, die in letzter Zeit von uns bearbeitet wurden.
Diese Beispiele umfassen das Phasenverhalten und die Aggregatstruktur von Tensiden und amphiphilen Copolymeren. Über dieses statische Verhalten hinaus, haben wir auch ein hohes Interesse an den dynamischen Eigenschaften und dem Ablauf morphologischer Übergänge, wie sie unter Nichtgleichgewichtsbedingungen beobachtet werden, und wie sie bei vielen Anwendungen auftreten. Eine wichtige Eigenschaft amphiphiler Moleküle ist ihre Fähigkeit schlecht lösliche Verbindungen in Lösung zu bringen, wobei sich Mikro-oder Nanoemulsionen bilden können. Die Fähigkeit solche Strukturen auszubilden hängt stark von der molekularen Architektur der Amphiphile ab. Bei polymeren Amphiphilen kann das Konzept der Tenside und ihrer Architektur maßgeblich zu variableren Strukturen hin erweitert werden, die komplexere Selbstaggregation zeigen und deutlich größere Zeit- und Längenskalen aufweisen. Eine weitere Arbeitsrichtung ist die tensidunterstützte Synthese von Nanopartikeln oder mesoporösen anorganischen Materialien. Durch die Kombination von Copolymeren mit anderen Polymeren, Copolymeren, Kolloiden oder Tensiden – z.B. durch elektrostatisch getriebenes Coassembly – kann man zunehmend komplex strukturierte kolloidale Aggregate aufbauen. Auf diese Art und Weise lassen sich z.B. die rheologischen Eigenschaften steuern oder Trägersysteme konzipieren, deren Eigenschaften über die molekulare Zusammensetzung maßgeschneidert eingestellt werden können. Dieses Streben nach kontrollierter Komplexität über die Wege der Selbstaggregation und der Coassembly führt dann zu Systemen zunehmend höherer Funktionalität und stellt die zentrale Richtung zukünftiger Forschungsaktivitäten unserer Arbeitsgruppe dar.
References
1. doi:10.1351/goldbook.C01172.10.1351/goldbook.C01172Search in Google Scholar
2. Israelachvili, J.: Intermolecular And Surface Forces. Academic Press, Waltham (USA), 2010.Search in Google Scholar
3. Panine, P., Gradzielski, M. and Narayanan, T.: Combined Rheometry and Small-Angle X-Ray Scattering. Rev. Sci. Instrum.74(2003)2451–2455.10.1063/1.1556943Search in Google Scholar
4. Laughlin, R.: The Aqueous Phase Behavior of Surfactants, Academic Press, Waltham (USA), 1994.10.1021/ja00147a600Search in Google Scholar
5. Rehage, H. and Hoffmann, H.: Viscoelastic surfactant solutions: model systems for rheological research. Mol. Phys.74(1991)933–973.10.1080/00268979100102721Search in Google Scholar
6. Gradzielski, M.: Vesicles and Vesicle Gels – Structure and Dynamics of Formation. J. Phys: Condens. Matter15(2003)R655–R697.10.1088/0953-8984/15/19/202Search in Google Scholar
7. Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II72(1976)1525–1568.10.1039/f29767201525Search in Google Scholar
8. Johnsson, M. and Edwards, K.: Liposomes, Disks, and Spherical Micelles: Aggregate Structure in Mixtures of Gel Phase Phosphatidylcholines and Poly(Ethylene Glycol)-Phospholipids. Biophys. J.85(2003)3839–3847.10.1016/S0006-3495(03)74798-5Search in Google Scholar
9. Miller, C. A., Gradzielski, M., Hoffmann, H., Krämer, U. and Thunig, C.: Experimental Results for the L3-phase in a Zwitterionic Surfactant System and their Implications Regarding Structures. Colloid Polym. Sci.268(1990)1066–1072.10.1007/BF01410596Search in Google Scholar
10. Porte, G., Delsanti, M., Billard, I., Skouri, M., Appell, J., Marignan, J. and Debeauvais, F.: Scaling laws for some physical properties of the L3 (sponge) phase. J. Phys. II1(1991)1101–1120.10.1051/jp2:1991207Search in Google Scholar
11. Farokhzad, O. C. and Langer, R.: Impact of Nanotechnology on Drug Delivery. ACS Nano3(2009)16–20.10.1021/nn900002mSearch in Google Scholar PubMed
12. Oberdisse, J., Couve, C., Appell, J., Berret, J. F., Ligoure, C. and Porte, G.: Vesicles and Onions from Charged Surfactant Bilayers: A Neutron Scattering Study. Langmuir12(1996)1212–1218.10.1021/la950313lSearch in Google Scholar
13. Beck, R., Gradzielski, M., Horbaschek, K., Shah, S. S., Hoffmann, H. and Strunz, P.: Phase Behaviour, Structure, and Physical Properties of the Quaternary System Tetradecyldimethyl-amine Oxide, HCl, 1-Hexanol, and Water. J. Colloid Interface Sci.221(2000)200–209.Search in Google Scholar
14. Jung, H. T., Coldren, B., Zasadzinski, J. A., Iampietro, D. J. and Kaler, E. W.: The origins of stability of spontaneous vesicles. PNAS98(2001)1353–1357.10.1073/pnas.98.4.1353Search in Google Scholar
15. Helfrich, W.: Elastic Properties of Lipid Bilayers?Theory and Possible Experiments. Z. Naturforsch. C28(1973)693–703.Search in Google Scholar
16. Hoffmann, H., Thunig, C., Schmiedel, P., Munkert, U.: Gels from surfactant solutions with densely packed multilamellar vesicles. Faraday Discuss.101(1995)319–333.10.1039/fd9950100319Search in Google Scholar
17. Hufnagl, A., Kinzel, S. and Gradzielski, M.: Vesicles and Vesicle Gels – Structure and Solubilisation Properties. Tenside Surf. Det.44(2007)110–115.Search in Google Scholar
18. Gradzielski, M., Müller, M., Bergmeier, M., Hoffmann, H. and Hoinkis, E.: Structural and Macroscopic Characterization of a Gel Phase of Densely Packed Monodisperse, Unilamellar Vesicles. J. Phys. Chem. B103(1999)1416–1424.10.1021/jp9833303Search in Google Scholar
19. Kinzel, S. and Gradzielski, M.: Control of Phase Behavior and Properties of Vesicle Gels by Admixing Ionic Surfactants to the Nonionic Surfactant Brij 30. Langmuir24(2008)10123–10132.10.1021/la801452zSearch in Google Scholar
20. Bressel, K., Prevost, S., Appavou, M.-S., Tiersch, B., Koetz, J. and Gradzielski, M.: Phase Behaviour and Structure of Zwitanionic Mixtures of Perfluorocarboxylates and Tetradecyldimethylamine oxide – Dependence on the Chain Length of the Perfluoro Surfactant Soft Matter7(2011)11232–11242.Search in Google Scholar
21. Wolf, C., Bressel, K., Drechsler, M. and Gradzielski, M.: Comparison of Vesicle Formation in Zwitanionic and Catanionic Mixtures of Hydrocarbon and Fluorocarbon Surfactants – Phase Behaviour and Structural Progression. Langmuir25(2009)11358–11366.10.1021/la901191aSearch in Google Scholar
22. Barth, A., Prévost, S., Popig, J., Dzionara, M., Hedicke, G. and Gradzielski, M.: Solubilisation of Different Medium Chain Esters in Zwitterionic Surfactant Solutions – Effects on Phase Behaviour and Structure. J. Coll. Interface Sci.364(2011)148–156.10.1016/j.jcis.2011.06.082Search in Google Scholar
23. Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. and Tondre, C.: Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem.80(1976)905–922.10.1021/j100550a001Search in Google Scholar
24. Kahlweit, K. M. and eubner, M.: On the kinetics of micellization in aqueous solutions. Adv. Coll. Interface Sci.13(1980)1–64.10.1016/0001-8686(80)87001-1Search in Google Scholar
25. Gradzielski, M.: Kinetics of Morphological Changes in Surfactant Systems. Curr. Opin. Colloid Interface Sci.8(2003)337–345.10.1016/S1359-0294(03)00080-3Search in Google Scholar
26. Gradzielski, M.: Investigations of the Dynamics of Morphological Transitions in Amphiphilic Systems. Curr. Opin. Colloid Interface Sci.9(2004)256–263.10.1016/j.cocis.2004.05.032Search in Google Scholar
27. Schmölzer, S., Gräbner, D., Gradzielski, M. and Narayanan, T.: Millisecond-Range Time-resolved Small-Angle X-ray Scattering Studies of Micellar Transformations. Phys. Rev. Lett.88(2002)258301.10.1103/PhysRevLett.88.258301Search in Google Scholar PubMed
28. Weiss, T. M., Narayanan, T. and Gradzielski, M.: Dynamics of Spontaneous Vesicle Formation in Fluorocarbon and Hydrocarbon Surfactant Mixtures. Langmuir24(2008)3759–3766.10.1021/la703515jSearch in Google Scholar PubMed
29. Bressel, K., Muthig, M., Prévost, S., Grillo, I. and Gradzielski, M.: Mesodynamics: Watching Vesicle Formation in-situ by Small-Angle Neutron Scattering. Colloid Polym. Sci.288(2010)827–840.10.1007/s00396-010-2212-zSearch in Google Scholar
30. Barth, A., Grillo, I. and Gradzielski, M.: Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments. Tenside Surf. Det.47(2010)300–306.Search in Google Scholar
31. Schwuger, M. J., Stickdorn, K. and Schomäcker, R.: Microemulsions in technical processes. Chem. Rev.95(1995)849–864.10.1021/cr00036a003Search in Google Scholar
32. Gradzielski, M.: Recent developments in the characterisation of microemulsions. Curr. Opin. Colloid Interface Sci.13(2008)263–269.10.1016/j.cocis.2007.10.006Search in Google Scholar
33. Jouffroy, J., Levinson, P. and de Gennes, P. G.: Phase equilibria involving microemulsions (Remarks on the Talmon-Prager model. J. Physique43(1982)1241–1248.10.1051/jphys:019820043080124100Search in Google Scholar
34. Gradzielski, M., Langevin, D. and Farago, B.: Experimental Investigation of the Structure of Nonionic Microemulsions and their Relation to the Bending Elasticity of the Amphiphilic Film. Phys. Rev. E53(1996)3900–3919.Search in Google Scholar
35. Strey, R.: Microemulsion microstructure and interfacial curvature. Colloid Polym. Sci.272(1994)1005–1019.10.1007/BF00658900Search in Google Scholar
36. M.Gradzielski, M.Gradzielski, Langevin, D., Sottmann, T. and Strey, R.: Small Angle Neutron Scattering Near the Wetting Transition: Discrimination of Microemulsions from Weakly Structured Mixtures. J. Chem. Phys.104(1996)3782–3787.10.1063/1.471031Search in Google Scholar
37. Gradzielski, M., Langevin, D., Sottmann, T. and Strey, R.: Droplet Microemulsions at the Emulsification Boundary: The Influence of the Surfactant Structure on the Elastic Constants of the Amphiphilic Film. J. Chem. Phys.106(1997)8232–8238.10.1063/1.473888Search in Google Scholar
38. Gradzielski, M., Hoffmann, H. and Langevin, D.: Solubilization of Decane into the Ternary System TDMAO/1-Hexanol/Water. J. Phys. Chem.99(1995)12612–12623.10.1021/j100033a039Search in Google Scholar
39. Gradzielski, M.: Effect of the Cosurfactant Structure on the Bending Elasticity in Nonionic Oil-in-Water Microemulsions. Langmuir14(1998)6037–6044.10.1021/la980074cSearch in Google Scholar
40. Milano-Brusco, J., Prévost, S., Lugo, D., Gradzielski, M. and Schomäcker, R.: Reaction Juan Catalytic Hydrogenation of Dimethyl Itaconate in Nonionic Microemulsions: Influence of the Size of Micelle. New J. Chem.33(2009)1726–1735.Search in Google Scholar
41. McClements, D. J.: Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter8(2012)1719–1729.10.1039/c2sm06903bSearch in Google Scholar
42. Sadurni, N., Solans, C., Azemar, N. and Garcia-Celma, M. J.: Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur. J. Pharm. Sci.26(2005)438–445.10.1016/j.ejps.2005.08.001Search in Google Scholar PubMed
43. Heunemann, P., Prévost, S., Grillo, I., Marino, C. M., Meyer, J. and Gradzielski, M.: Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter7(2011)5697–5710.10.1039/c0sm01556cSearch in Google Scholar
44. Lazzara, G., Milioto, S. and Gradzielski, M.: The Solubilisation Behaviour of Some Dichloroalkanes in Aqueous Solutions of PEO-PPO-PEO Triblock Copolymers: a Dynamic Light Scattering, Fluorescence Spectroscopy, and SANS Study. Phys. Chem. Chem. Phys.8(2006)2299–2312.10.1039/b516242bSearch in Google Scholar PubMed
45. De Lisi, R., Gradzielski, M., Lazzara, G., Milioto, S., Muratore, N. and Prevost, S.: Aqueous Block Copolymer-Surfactant Mixtures and Their Ability in Solubilizing Chlorinated Organic Compounds. A Thermodynamic and SANS Study. J. Phys. Chem. B110(2006)25883–25894.10.1021/jp065035lSearch in Google Scholar PubMed
46. Zehm, D., Laschewsky, A., Gradzielski, M., Prévost, S., Liang, H., Rabe, J. P., Schweins, R. and Gummel, J.: Amphiphilic Dual Brush Block Copolymers as Giant Surfactants and Their Aqueous Self-Assembly. Langmuir26(2010)3145–3155.10.1021/la903087pSearch in Google Scholar PubMed
47. Zehm, D., Laschewsky, A., Heunemann, P., Gradzielski, M., Prévost, S., Liang, H., Rabe, J. P. and Lutz, J. F.: Synthesis and Self-assembly of Amphiphilic Semi-brush and Dual Brush Block Copolymers in Solution and on Surfaces. Polym. Chem.2(2011)137–147.10.1039/c0py00200cSearch in Google Scholar
48. Burkhardt, M., Martinez-Castro, N., Tea, S., Drechsler, M., Babin, I., Grishagin, I., Schweins, R., Pergushov, D. V., Gradzielski, M., Zezin, A. B. and Müller, A. H. E.: Polyisobutylene-block-poly(methacrylic acid) Diblock Copolymers: Self-assembly in Aqueous Media, Langmuir23(2007)12864–12874.10.1021/la701807bSearch in Google Scholar PubMed
49. Vamvakaki, M., Patrickios, C. S., Gradzielski, M. and Lindner, P.: Amphiphilic Networks Based on Cross-Linked Star Polymers: A Small-Angle Neutron Scattering Study. Langmuir23(2007)10433–10437.10.1021/la700933pSearch in Google Scholar PubMed
50. Kafouris, D., Gradzielski, M. and Patrickios, C. S.: Synthesis and Characterization of Large-Core Star Polymers and Polymer Networks: Effects of Arm Length and Composition of the Cross-Linking Mixture, Macromol. Chem. Phys.210(2009)367–376.Search in Google Scholar
51. Hadjiantoniou, N. A., Triftaridou, A. I., Kafouris, D., Gradzielski, M. and Patrickios, C. S.: Synthesis and Characterization of Amphiphilic Multiblock Copolymers: Effect of the Number of Blocks on Micellization. Macromolecules42(2009)5492–5498.10.1021/ma900554kSearch in Google Scholar
52. Langevin, D.: Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions. A review. Adv. Coll. Interface Sci.147–148(2009)170–177.10.1016/j.cis.2008.08.013Search in Google Scholar PubMed
53. Bronich, T. K., Kabanov, A. V., Kabanov, V. A., Yu, K. and Eisenberg, A.: Soluble Complexes from Poly(ethylene oxide)-block-polymethacrylate Anions and N-Alkylpyridinium Cations. Macromolecules30(1997)3519–3525.Search in Google Scholar
54. Gradzielski, M., Rauscher, A. and Hoffmann, H.: Hydrophobically Cross-linked Micellar Solutions: Microstructure and Properties of the Solutions;J. Physique IV3(C1)(1993)65–79.10.1051/jp4:1993107Search in Google Scholar
55. Berret, J. F.: Evidence of overcharging in the complexation between oppositely charged polymers and surfactants. J. Chem. Phys.123(2005)164703.10.1063/1.2031167Search in Google Scholar PubMed
56. Hoffmann, I.Heunemann, P., Prévost, S., Schweins, R., Wagner, N. J. and Gradzielski, M.: Self-Aggregation of mixtures of oppositely charged Polyelectrolytes and Surfactants studied by Rheology, DLS and SANS. Langmuir27(2011)4386–4396.Search in Google Scholar
57. Hoffmann, I., Prévost, S., Medebach, M., Rogers, S., Wagner, N. J. and Gradzielski, M.: Control of Rheological Behaviour with Oppositely Charged Polyelectrolyte Surfactant Mixtures. Tenside, Surfactants, Detergents48(2011)488–494.Search in Google Scholar
58. Hamilton, A., Baulcombe, D.: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science286(1999)950–952.10.1126/science.286.5441.950Search in Google Scholar PubMed
59. Elbashir, S., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T.: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411(2001)494–498.Search in Google Scholar
60. Xia, H., Mao, Q., Paulson, H. L. and Davidson, B. L.: siRNA-mediated gene silencing in vitro and in vivo. Nature Biotech.20(2002)1006–1010.10.1038/nbt739Search in Google Scholar PubMed
61. Fischer, W., Brissault, B., Prévost, S., Kopaczynska, M., Andreou, I., Janosch, A., Gradzielski, M. and Haag, R.: Synthesis of Linear Polyamines with Different Amine Spacings and their Ability to Form dsDNA/ siRNA Complexes Suitable for Transfection. Macromol. Biosci.10(2010)1073–1083.10.1002/mabi.201000082Search in Google Scholar PubMed
62. Prévost, S., Riemer, S., Fischer, W., Haag, R., Böttcher, C., Gummel, J., Grillo, I., Appavou, M. S. and Gradzielski, M.: Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules12(2011)4272–4282.Search in Google Scholar
63. Stenstam, A., Montalvo, G., Grillo, I. and Gradzielski, M.: Small Angle Neutron Scattering Study of Lysozyme-Sodium Dodecyl Sulfate Aggregates. J. Phys. Chem. B107(2003)12331–12338.10.1021/jp0352783Search in Google Scholar
64. Xu, A. W., Ma, Y. and Coelfen, H.: Biomimetic mineralization. J. Mater. Chem.17(2007)415–449.10.1039/b611918mSearch in Google Scholar
65. Giordano, C., Longo, A., Ruggirello, A., Turco Liveri, V. and Venezia, A. M.: Physicochemical investigation of cobalt–iron cyanide nanoparticles synthesized by a novel solid–solid reaction in confined space. Colloid Polym. Sci.283(2004)265–276.Search in Google Scholar
66. Mehta, S. K., Chaudhary, S. and Gradzielski, M.: Time Dependence of Nucleation and Growth of Silver nanoparticles Generated by Sugar Reduction in Micellar Media. J. Coll. Interface Sci.343(2010)447–453.10.1016/j.jcis.2009.11.053Search in Google Scholar PubMed
67. Mehta, S. K., Kumar, S., Chaudhary, S., Bhasin, K. K. and Gradzielski, M.: Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters. Nanoscale Res Lett.4(2009)17–28.10.1007/s11671-008-9196-3Search in Google Scholar PubMed PubMed Central
68. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(1992)710–712.10.1038/359710a0Search in Google Scholar
69. Gradzielski, M., Bergmeier, M., Hoffmann, H., Müller, M. and Grillo, I.: Vesicle Gel Formed by a Self-Organization Process. J. Phys. Chem. B104(2000)11594–11597.10.1021/jp0028913Search in Google Scholar
70. Oppel, C., Prévost, S.; Noirez, L. and Gradzielski, M.: The Use of Highly Ordered Vesicle Gels as Template in the Formation of Silica Gels, Langmuir27(2011)8885–8897.10.1021/la104972rSearch in Google Scholar PubMed
© 2012, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- 7th European Detergents Conference (EDC)
- Biosurfactants as Antimicrobial Ingredients for Cleaning Products and Cosmetics
- Scientific Results and Economic Effects from the Centre for Surfactants Based on Natural Products (SNAP)
- Application
- Preparation and Performance of Catanionic Surfactants
- Environmental Chemistry
- Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems
- Novel Surfactants
- Lyotropic Liquid Crystals Formed in Brij35/Copolymer/Water System
- Physical Chemistry
- Micellization of Alkyl Trimethyl Ammonium Bromides in Aqueous Solutions–Part 1: Critical Micelle Concentration (CMC) and Ionization Degree
- Review
- Electrical Properties of PANI/Chalcogenide Junctions Doped with Ionic Liquids Anions
- Synthesis
- Synthesis of Quaternary Derivatives of Ortho-Coco Di-Amido Toluene and Investigation of these Compounds as Cationic Bitumen Emulsifier
- Synthesis and Surface Activity of Guerbet Betaine Surfactants with Ethylene Oxide Groups
- Research Group Portrait
- Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- 7th European Detergents Conference (EDC)
- Biosurfactants as Antimicrobial Ingredients for Cleaning Products and Cosmetics
- Scientific Results and Economic Effects from the Centre for Surfactants Based on Natural Products (SNAP)
- Application
- Preparation and Performance of Catanionic Surfactants
- Environmental Chemistry
- Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems
- Novel Surfactants
- Lyotropic Liquid Crystals Formed in Brij35/Copolymer/Water System
- Physical Chemistry
- Micellization of Alkyl Trimethyl Ammonium Bromides in Aqueous Solutions–Part 1: Critical Micelle Concentration (CMC) and Ionization Degree
- Review
- Electrical Properties of PANI/Chalcogenide Junctions Doped with Ionic Liquids Anions
- Synthesis
- Synthesis of Quaternary Derivatives of Ortho-Coco Di-Amido Toluene and Investigation of these Compounds as Cationic Bitumen Emulsifier
- Synthesis and Surface Activity of Guerbet Betaine Surfactants with Ethylene Oxide Groups
- Research Group Portrait
- Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality