Home Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
Article
Licensed
Unlicensed Requires Authentication

Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions

  • C. Bauer , P. Bauduin , O. Diat and T. Zemb
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Bicontinuous microemulsions are investigated as a model system for the specific adsorption phenomena of metal ions at the water-oil interface. Mixing an extremely hydrophobic ion extractant – tributyl phosphate (TBP) used here as co-surfactant – with an extremely hydrophilic sugar-based surfactant, we describe a new type of functionalized microemulsions that shows the classical Winsor phases, by varying the surfactant/extractant ratio. We focus on the Winsor III-type microemulsions by determining the phase diagrams whereas the microstructures were accessed by performing small angle neutron scattering experiments. Ultimately, these microemulsions may pave the way for the design of new selective ion extraction processes.

Kurzfassung

Wir untersuchen bikontinuierliche Mikroemulsionen als Modelsystem spezifischer Adsorptionsphänomene von Metall-Ionen an deren Wasser-Öl Grenzflächen. Mischt man ein stark hydrophobes Ionenextraktionsmittel (Extraktant – hier Tributylphosphat), welches als Co-Tensid dient, mit einem stark hydrophilen Zuckertensid, n-Octyl-beta-glucosid, so erhält man, allein durch Änderung des Tensid/Extraktant-Verhältnisses innovative und funktionalisierte Mikroemulsionen, welche mit den klassischen Winsorphasen beschrieben werden können. Hier beschränken wir uns auf Winsor-III-Mikroemulsionen, bestimmen deren Phasendiagramm und Mikrostruktur durch Neutronenkleinwinkelstreuung. Diese Mikroemulsionen könnten neue Wege für die Entwicklung weiterer, selektive Ionenextraktionsprozesse öffnen.


Dr. Pierre Bauduin, Institut de Chimie Séparative bat. 426 – CEA Marcoule, 30200 Bagnols sur Cèze, France, Tel.: +(33)466339288, Fax: +(33)466337611. E-Mail:

Caroline Bauer studied chemistry at the Technical University of Munich and at the University of Regensburg (GERMANY) where she obtained her master degree. She is currently Ph.D. student at the Institute of Separation Chemistry of Marcoule (FRANCE) and working on models systems for the study of ion adsorption at liquid interfaces related to the extraction process in the nuclear field.

Pierre Bauduin obtained his Ph.D. in 2005 at the University of Regensburg (GERMANY) and worked on short chain amphiphiles derived from propylene glycols. He worked as a Post-doc at the CEA Saclay on the study of liquid/liquid extraction processes from a supramolecular point of view. Since 2007 he obtained a position as researcher at ICSM in the group “ions at interfaces” where he is working on the role of interfacial effects on the separation processes.

Olivier Diat obtained his Ph.D. in 1992 from the University of Bordeaux 1, working on the rheology of lyotropic liquid crystal phases. He worked 7 years at the ESRF on the high brilliance beamline ID2 and then obtained a permanent position as a researcher in CEA-Grenoble, working on proton exchange membrane for fuel cell application. Since 2007, he is scientist at ICSM responsible of the “scattering” team as well as the “ions at interfaces” laboratory.

Thomas Zemb obtained his Ph.D. in1985 from the University of Paris 11, he is Professor at the INSTN (FRANCE), and he is senior scientist and currently manager of the ICSM.


References

1. (a) Bourrel, R. S. and Schechter, M.: Microemulsions and related System: Formulation, Solvency and physical properties. Surfactant Science Series; Marcel Dekker, New York, 1988. (b) Chevalier, Y. and Zemb Th.,: Rep. Progr. Phys. 53 (1990) 279.Search in Google Scholar

2. Solans, C. and Kunieda, H.: Industrial Application of Microemulsions, Surfactant Science Series; Marcel Dekker, New York, 1997.Search in Google Scholar

3. Sawada, K., Hirabayashi, D. and Enokida, D.: Prog. Nuclear Energy50 (2008) 483. 10.1016/j.pnucene.2007.11.033Search in Google Scholar

4. Shah, D. O. and Schechter, R. S.: Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press, New York, 1977.Search in Google Scholar

5. West, C. C. and Harwell, J. H.: Env. Sci. Tech.26 (1992) 2324. 10.1021/es00036a002Search in Google Scholar

6. Miller, C. A. and Raney, K. H.: Colloids Surf. A74 (1993) 169. 10.1016/0927-7757(93)80263-ESearch in Google Scholar

7. Marchal, F., Guenoun, P., Daillant, J., Holley, D. and Mays, J. W.: Soft Matter5 (2009) 4006. 10.1039/b904990hSearch in Google Scholar

8. Bauduin, P., Touraud, D., Kunz, W., Savelli, M. P., Pulvin, S. and Ninham, B. W.: J. Colloids Iinterf. Sci.292 (2005) 244. 10.1016/j.jcis.2005.05.043Search in Google Scholar PubMed

9. Liping, L., Bauduin, P., Zemb, P., Eastoe, J., Hao, J.: Langmuir25 (2009) 2055. 10.1021/la8036378Search in Google Scholar PubMed

10. Zech, O., Thomaier, S., Bauduin, P., Rueck, T., Touraud, D. and Kunz, W.: J. Phys. Chem. B113 (2009) 465. 10.1021/jp8061042Search in Google Scholar PubMed

11. Lindner, P. and Zemb, Th.: Light, X-ray and neutron scattering, a tool to investigate colloidal systems, North-Holland, Amsterdam, 2002.Search in Google Scholar

12. Kahlweit, M., Strey, R. and Busse, B.: J. Phys. Chem95 (1991) 5344. 10.1021/j100166a077Search in Google Scholar

13. Nash, K. L., Lumetta, G. J., Clark, S. B. and Friese, J.: Significance of the nuclear fuel cycle in the 21st century. Vol. 933 of ACS Symposium Series, 2006, 3.10.1021/bk-2006-0933.ch001Search in Google Scholar

14. Rao, P. R. V. and Kolarik, Z.: Solv. Extraction Ion Exch.14 (1996) 955. 10.1080/07366299608918378Search in Google Scholar

15. Zana, R.: Adv. Colloid Interf. Sci.57 (1995) 1. 10.1016/0001-8686(95)00235-ISearch in Google Scholar

16. Keiderling, U. and Widenmann, A.: PHYSICA B213 (1995) 895. 10.1016/0921-4526(95)00316-2Search in Google Scholar

17. Keiderling, U.: App. Phys. A74 (2002) 1455. 10.1007/s003390201561Search in Google Scholar

18. Reimer, J., Soderman, O., Sottmann, T., Kluge, K. and Strey, R.: Langmuir19 (2003) 10692. 10.1021/la034847vSearch in Google Scholar

19. Kegel, W. K. and Lekkerkerker, H. N.: Colloids Surf. A76 (1993) 241. 10.1016/0927-7757(93)80084-RSearch in Google Scholar

20. Degennes, P. G. and Taupin, C.: J. Phys. Chem.86 (1982) 2294. 10.1021/j100210a011Search in Google Scholar

21. Andelman, D., Cates, M. E., Roux, D. and Safran, A.: J. Chem. Phys.87 (1987) 7229. 10.1063/1.453367Search in Google Scholar

22. Zemb, Th.: Colloids Surf. A 129–130 (1997) 435.Search in Google Scholar

23. Keskinov, V. A., Lishchuk, V. V. and Pyartman, A. K.: Russ. J. Inorg. Chem.52 (2007) 1144. 10.1134/S0036023607070261Search in Google Scholar

24. Yamaguchi, Y., Aoki, R., Azemar, N., Solans, C. and Kunieda, H.: Langmuir15 (1999) 7438. 10.1021/la9813026Search in Google Scholar

25. Teubner, M. and Strey, R.: J. Chem. Phys.87 (1987) 3195. 10.1063/1.453006Search in Google Scholar

26. Bauer, C., Bauduin, P., Diat, O. and Zemb, Th.: Submitted.Search in Google Scholar

Received: 2010-05-11
Published Online: 2013-04-05
Published in Print: 2010-09-01

© 2010, Carl Hanser Publisher, Munich

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110082/pdf
Scroll to top button