Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
-
C. Bauer
, P. Bauduin , O. Diat and T. Zemb
Abstract
Bicontinuous microemulsions are investigated as a model system for the specific adsorption phenomena of metal ions at the water-oil interface. Mixing an extremely hydrophobic ion extractant – tributyl phosphate (TBP) used here as co-surfactant – with an extremely hydrophilic sugar-based surfactant, we describe a new type of functionalized microemulsions that shows the classical Winsor phases, by varying the surfactant/extractant ratio. We focus on the Winsor III-type microemulsions by determining the phase diagrams whereas the microstructures were accessed by performing small angle neutron scattering experiments. Ultimately, these microemulsions may pave the way for the design of new selective ion extraction processes.
Kurzfassung
Wir untersuchen bikontinuierliche Mikroemulsionen als Modelsystem spezifischer Adsorptionsphänomene von Metall-Ionen an deren Wasser-Öl Grenzflächen. Mischt man ein stark hydrophobes Ionenextraktionsmittel (Extraktant – hier Tributylphosphat), welches als Co-Tensid dient, mit einem stark hydrophilen Zuckertensid, n-Octyl-beta-glucosid, so erhält man, allein durch Änderung des Tensid/Extraktant-Verhältnisses innovative und funktionalisierte Mikroemulsionen, welche mit den klassischen Winsorphasen beschrieben werden können. Hier beschränken wir uns auf Winsor-III-Mikroemulsionen, bestimmen deren Phasendiagramm und Mikrostruktur durch Neutronenkleinwinkelstreuung. Diese Mikroemulsionen könnten neue Wege für die Entwicklung weiterer, selektive Ionenextraktionsprozesse öffnen.
References
1. (a) Bourrel, R. S. and Schechter, M.: Microemulsions and related System: Formulation, Solvency and physical properties. Surfactant Science Series; Marcel Dekker, New York, 1988. (b) Chevalier, Y. and Zemb Th.,: Rep. Progr. Phys. 53 (1990) 279.Search in Google Scholar
2. Solans, C. and Kunieda, H.: Industrial Application of Microemulsions, Surfactant Science Series; Marcel Dekker, New York, 1997.Search in Google Scholar
3. Sawada, K., Hirabayashi, D. and Enokida, D.: Prog. Nuclear Energy50 (2008) 483. 10.1016/j.pnucene.2007.11.033Search in Google Scholar
4. Shah, D. O. and Schechter, R. S.: Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press, New York, 1977.Search in Google Scholar
5. West, C. C. and Harwell, J. H.: Env. Sci. Tech.26 (1992) 2324. 10.1021/es00036a002Search in Google Scholar
6. Miller, C. A. and Raney, K. H.: Colloids Surf. A74 (1993) 169. 10.1016/0927-7757(93)80263-ESearch in Google Scholar
7. Marchal, F., Guenoun, P., Daillant, J., Holley, D. and Mays, J. W.: Soft Matter5 (2009) 4006. 10.1039/b904990hSearch in Google Scholar
8. Bauduin, P., Touraud, D., Kunz, W., Savelli, M. P., Pulvin, S. and Ninham, B. W.: J. Colloids Iinterf. Sci.292 (2005) 244. 10.1016/j.jcis.2005.05.043Search in Google Scholar PubMed
9. Liping, L., Bauduin, P., Zemb, P., Eastoe, J., Hao, J.: Langmuir25 (2009) 2055. 10.1021/la8036378Search in Google Scholar PubMed
10. Zech, O., Thomaier, S., Bauduin, P., Rueck, T., Touraud, D. and Kunz, W.: J. Phys. Chem. B113 (2009) 465. 10.1021/jp8061042Search in Google Scholar PubMed
11. Lindner, P. and Zemb, Th.: Light, X-ray and neutron scattering, a tool to investigate colloidal systems, North-Holland, Amsterdam, 2002.Search in Google Scholar
12. Kahlweit, M., Strey, R. and Busse, B.: J. Phys. Chem95 (1991) 5344. 10.1021/j100166a077Search in Google Scholar
13. Nash, K. L., Lumetta, G. J., Clark, S. B. and Friese, J.: Significance of the nuclear fuel cycle in the 21st century. Vol. 933 of ACS Symposium Series, 2006, 3.10.1021/bk-2006-0933.ch001Search in Google Scholar
14. Rao, P. R. V. and Kolarik, Z.: Solv. Extraction Ion Exch.14 (1996) 955. 10.1080/07366299608918378Search in Google Scholar
15. Zana, R.: Adv. Colloid Interf. Sci.57 (1995) 1. 10.1016/0001-8686(95)00235-ISearch in Google Scholar
16. Keiderling, U. and Widenmann, A.: PHYSICA B213 (1995) 895. 10.1016/0921-4526(95)00316-2Search in Google Scholar
17. Keiderling, U.: App. Phys. A74 (2002) 1455. 10.1007/s003390201561Search in Google Scholar
18. Reimer, J., Soderman, O., Sottmann, T., Kluge, K. and Strey, R.: Langmuir19 (2003) 10692. 10.1021/la034847vSearch in Google Scholar
19. Kegel, W. K. and Lekkerkerker, H. N.: Colloids Surf. A76 (1993) 241. 10.1016/0927-7757(93)80084-RSearch in Google Scholar
20. Degennes, P. G. and Taupin, C.: J. Phys. Chem.86 (1982) 2294. 10.1021/j100210a011Search in Google Scholar
21. Andelman, D., Cates, M. E., Roux, D. and Safran, A.: J. Chem. Phys.87 (1987) 7229. 10.1063/1.453367Search in Google Scholar
22. Zemb, Th.: Colloids Surf. A 129–130 (1997) 435.Search in Google Scholar
23. Keskinov, V. A., Lishchuk, V. V. and Pyartman, A. K.: Russ. J. Inorg. Chem.52 (2007) 1144. 10.1134/S0036023607070261Search in Google Scholar
24. Yamaguchi, Y., Aoki, R., Azemar, N., Solans, C. and Kunieda, H.: Langmuir15 (1999) 7438. 10.1021/la9813026Search in Google Scholar
25. Teubner, M. and Strey, R.: J. Chem. Phys.87 (1987) 3195. 10.1063/1.453006Search in Google Scholar
26. Bauer, C., Bauduin, P., Diat, O. and Zemb, Th.: Submitted.Search in Google Scholar
© 2010, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Environmental/Technical Chemistry
- Alkyl Polyglycoside-Sorbitan Ester Formulations for Improved Oil Recovery
- Novel Surfactants
- Photosynthesis-inhibiting Effects of Cationic Biodegradable Gemini Surfactants
- Synthesis and Characterization of a New Cationic Galactolipid with Carbamate for Gene Delivery
- Physical Chemistry
- Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments
- Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
- Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate
- Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
- Synthesis
- Ordered Ferrocene-containing Mesoporous Materials with Tailor-made Pore Size
- Cleaning Technology
- Comparison of Standards for Testing Electrical Dishwashers or Dishwashing Detergents
- Manual Dishwashing – How can it be Optimized?
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Environmental/Technical Chemistry
- Alkyl Polyglycoside-Sorbitan Ester Formulations for Improved Oil Recovery
- Novel Surfactants
- Photosynthesis-inhibiting Effects of Cationic Biodegradable Gemini Surfactants
- Synthesis and Characterization of a New Cationic Galactolipid with Carbamate for Gene Delivery
- Physical Chemistry
- Dynamics of Formation of Vesicles Studied by Highly Time-resolved Stopped-flow Experiments
- Ion Extractant as Cosurfactant at the Water-Oil Interface in Microemulsions
- Microemulsions with Mixed Nonionic Surfactants and Isopropylmyristate
- Micellization and Interfacial Behaviour of Amitriptyline-Nonionic Surfactant Systems in Aqueous Medium
- Synthesis
- Ordered Ferrocene-containing Mesoporous Materials with Tailor-made Pore Size
- Cleaning Technology
- Comparison of Standards for Testing Electrical Dishwashers or Dishwashing Detergents
- Manual Dishwashing – How can it be Optimized?