Startseite Naturwissenschaften Phase Separation Study of a Surface-Active Drug, Promazine Hydrochloride, in Presence of Surfactants and Ureas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase Separation Study of a Surface-Active Drug, Promazine Hydrochloride, in Presence of Surfactants and Ureas

  • Kabir-ud-Din , Mohd. D. A. Al-Ahmadi , A. Z. Naqvi und Mohd. Akram
Veröffentlicht/Copyright: 2. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As clouding in drugs causes high concentration of drug at a particular site which may prove harmful to the body, the clouding behaviour of a tricyclic phenothiazine drug promazine hydrochloride (PMZ) in aqueous solutions has been studied in the presence of surfactants and ureas. The cloud point (CP) decreases with increase in pH due to deprotonation of the drug molecules. Addition of non-ionic and cationic (conventional as well as Gemini) surfactants increased the CP whereas anionic surfactants showed a peaked profile. The urea family additives influenced the CP in both ways that depended whether they contain >C=O or >C=S moiety: the former interacts with the micelles and lowers the CP while the latter (due to its electropositive character) may not interact and hence CP increases. Dye solubilization results indicate micellar growth with the addition of surfactants in PMZ solutions. The results are interpreted taking cognizance of mixed micelle formation, hydrophobic interactions, and/or change in solvent structure.

Kurzfassung

Da die Trübung von Medikamenten hohe Arzneimittelkonzentrationen in besonderer Weise bewirken, die sich für den menschlichen Körper als gesundheitsschädlich erweisen können, wurde das Trübungsverhalten eines trizyklischen Phenothiazin-Medikaments, Promazinhydrochlorid (PMZ), in wässriger Lösung in Gegenwart von Tensiden und Harnstoffen untersucht. Der Trübungspunkt (CP) nimmt bei pH-Erhöhung aufgrund der Deprotonierung der Arzneimoleküle ab. Die Zugabe von nichtionischen und kationischen (konventionelle sowie Gemini-Tenside) Tensiden erhöht den Trübungspunkt, während anionische Tenside zunächst eine Erhöhung und dann eine Abnahme zeigen. Die Harnstoffadditive beeinflussen den Trübungspunkt in beide Richtungen, abhängig davon, ob diese eine >C=O oder eine >C=S Gruppe enthalten: Die erstere interagiert mit den Mizellen und erniedrigt den Trübungspunkt, während die letztere (aufgrund ihres elektropositiven Charakters) nicht interagiert und infolgedessen den Trübungspunkt erhöht. Farbstofflösungen indizieren ein mizellares Wachstum bei Zugabe von Tensiden in PMZ-Lösungen. Die Ergebnisse werden unter Kenntnisnahme von Mischmizellenformationen, hydrophoben Wechselwirkungen und/oder Wechsel in der Lösemittelstruktur interpretiert.


Prof. Kabir-ud-Din, Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India. E-mail:

Prof. Kabir-ud-Din is Professor of Physical Chemistry at Aligarh Muslim University. He received his M.Sc. and Ph.D. degrees from the same University. He held Post-Doc positions at Prague (Czech Republic), Keele (UK) and Austin (USA). The research lines followed at present are: micellar kinetics, electrochemistry, physico-chemical behaviour of aqueous micellar solutions, the clouding phenomenon in amphiphilic systems, etc. He has authored over 200 research papers.

Mohammed D. A. Al-Ahmadi is currently a Ph.D. student at Department of Chemistry, Aligarh Muslim University, Aligarh, India. He received his M.Sc. degree from Basra University, Iraq.

Dr. A. Z. Naqvi received her M.Sc. and Ph.D. degrees from Aligarh Muslim University. Her research interest is in the solution behaviour of amphiphiles.

Dr. Mohd. Akram is a Lecturer in Department of Chemistry at Aligarh Muslim University. He received his M.Sc. and Ph.D. degrees from the same university. His research interests include micellar catalysis, kinetics and the solution behaviour of surfactants.


References

1.Muller, N.: Acc. Chem. Res.23(1990)23. 10.1021/ar00169a005Suche in Google Scholar

2.Chen, L.-J., Lin, S.-Y. and Huang, C.-C.: J. Phys. Chem. B102(1998)4350. 10.1021/jp9804345Suche in Google Scholar

3.Maclay, W. N.: J. Colloid Sci.11(1956)272. 10.1016/0095-8522(56)90052-6Suche in Google Scholar

4.Sharma, K. S., Patil, S. R. and Rakshit, A. K.: Colloids Surf. A219(2003)67. 10.1016/S0927-7757(03)00012-8Suche in Google Scholar

5.Atherton, D. A. and Barry, B. W.: J. Colloid Interface Sci.106(1985)479. 10.1016/S0021-9797(85)80023-0Suche in Google Scholar

6.Attwood, D. and Natarajan, R.: J. Pharm. Pharmacol.33(1981)136. 10.1111/j.2042-7158.1981.tb13735.xSuche in Google Scholar

7.Schreier, S., Malheiros, S. V. P. and de Paula, E.: Biochim. Biophys. Acta.1508(2000)210. 10.1016/S0304-4157(00)00012-5Suche in Google Scholar

8.Green, A. L.: J Pharm. Pharmacol.19(1966)10. 10.1111/j.2042-7158.1967.tb07987.xSuche in Google Scholar PubMed

9.Kabir-ud-Din, Fatma W., and Khan, Z. A.: Colloid Polym. Sci.284(2006)1339. 10.1007/s00396-005-1417-zSuche in Google Scholar PubMed PubMed Central

10.Alam, M. S., Kumar, S., Naqvi, A. Z. and Kabir-ud-Din: Colloids Surf. B53(2006)60. 10.1016/j.colsurfb.2006.07.017Suche in Google Scholar PubMed

11.Alam, M. S., Kumar, S., Naqvi, A. Z. and Kabir-ud-Din, S.: J. Colloid Interface Sci.306(2007)161. 10.1016/j.jcis.2006.10.021Suche in Google Scholar

12. (a) Tanford, C.: J. Phys. Chem.76(1972)3020. (b) Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, (1973). 10.1021/j100665a018Suche in Google Scholar

13.Wennerstrom, H. and Lindman, B.: Phys. Rep.52(1979)1. 10.1016/0370-1573(79)90087-5Suche in Google Scholar

14.Zana, R., Benrraou, M. and Rueff, R.: Langmuir7(1991)1072. 10.1021/la00054a008Suche in Google Scholar

15.De, S., Aswal, V. K., Goyal, P. S. and Bhattacharya, S.: J. Phys. Chem.100(1996)11664. 10.1021/jp9535598Suche in Google Scholar

16.Karaborni, S., Esselink, K., Hilbers, P. A. J., Smit, B., Karthauser, J., Van Os, N. M. and Zana, R.: Science266(1994)254. 10.1126/science.266.5183.254Suche in Google Scholar

17.Kim, E. J., Kim, S., Yoo, I.-K., Chung, J. S., Kim, J. S. and Shah, D. O.: Chem. Eng. Com.193(2006)1056.10.1080/00986440500352014Suche in Google Scholar

18.Kim, E. J. and Shah, D. O.: Colloids Surf. A227(2003)105. 10.1016/S0927-7757(03)00415-1Suche in Google Scholar

19.Laughlin, R. G.: Adv. Liq. Crystals.3(1978)41.10.1016/B978-0-12-025003-5.50009-XSuche in Google Scholar

20.Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36, Washington DC, (1971).Suche in Google Scholar

21.Ruiz, C. C. and Sanchez, F. G.: J. Colloid Interface Sci.165 (1994)110. 10.1006/jcis.1994.1211Suche in Google Scholar

22.Ruiz, C. C.: Colloid Polym. Sci.273(1995)1033. 10.1007/BF00657670Suche in Google Scholar

23.Nozaki, Y. and Tanford, C.: J. Biol. Chem.238(1963)4074.10.1016/S0021-9258(18)51830-5Suche in Google Scholar

24.Wetlaufer, D. B., Malik, S. K., Stoller, L. and Coffin, R. L.: J. Am. Chem. Soc.86(1964)508. 10.1021/ja01057a045Suche in Google Scholar

25.Enea, O. and Jolicoeur, C. J.: J. Phys. Chem.86(1982)3870. 10.1021/j100216a033Suche in Google Scholar

26.Bonner, O. D., Bednareck, J. M. and Arisman, R. K.: J. Am. Chem. Soc.99(1977)2898. 10.1021/ja00451a009Suche in Google Scholar

27.Manabe, M., Koda, M. and Shirahama, K.: J. Colloid Interface Sci.77(1980)189. 10.1016/0021-9797(80)90430-0Suche in Google Scholar

28.Tanaka, H., Nakamishi, K. and Touhara, H.: J. Chem. Phys.82(1985)5184. 10.1063/1.448643Suche in Google Scholar

29.Marchese, R. A., Mehrotra, P. R. and Beveridge, D. L.: J. Phys. Chem.88(1984)5692. 10.1021/j150667a048Suche in Google Scholar

30.Briganti, G., Puvvada, S. and Blankschtein, D.: J. Phys. Chem.95(1991)8989. 10.1021/j100175a103Suche in Google Scholar

Received: 2007-10-25
Published Online: 2013-04-02
Published in Print: 2008-05-01

© 2008, Carl Hanser Publisher, Munich

Heruntergeladen am 18.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.100370/html
Button zum nach oben scrollen