Conductivity Measurements as a Method for Studying Ionic Technical Grade Surfactants
-
E. Carey
Abstract
The critical micellar concentrations (cmc) of cationic alkyltrimethylammonium bromides (C10TAB – C16TAB) and of anionic alkyl sulfates (SDS, technical grade Sulfopon 12G and Sulfopon 1214G) were determined using specific conductivity and surface tension measurements. While the cationic surfactants were purified, the anionic surfactants were used as received. In the former case, surface tension and conductivity measurements lead to the same cmc values. In the latter case, measuring the specific conductivities (bulk property) proved to be superior compared to measuring the surface tensions (surface property) because the presence of highly surface active impurities creates a pronounced minimum in the surface tension isotherm, which makes it impossible to determine an accurate value for the cmc. On the other hand, these impurities do not influence the conductivities, i. e. that the conductivities can be used to determine cmc values of impure and technical grade ionic surfactants, respectively. Moreover, an evaluation of the specific conductivities allows for the determination of the degree of micelle ionization (α) of the ionic surfactant solutions and thus provides additional useful information.
Kurzfassung
Um die kritischen Mizellbildungskonzentrationen (cmc) kationischer Alkyltrimethylammoniumbromide (C10TAB – C16TAB) sowie anionischer Alkylsulfate (SDS, technisches Sulfopon 12G und Sulfopon 1214G) zu bestimmen, wurden spezifische Leitfähigkeiten sowie Oberflächenspannungen gemessen. Die kationischen Tenside sind gereinigt worden, während die anionischen nicht weiter aufgearbeitet wurden. Es zeigte sich im Falle der CnTAB Reihe, dass beide Messmethoden zum gleichen Ergebnis führen. Bei den anionischen Tensiden konnte mittels Oberflächenspannungen keine Aussage über die cmc gemacht werden, da das durch Verunreinigungen verursachte Minimum ein Auswerten der Kurven unmöglich macht. Hingegen lieferten Leitfähigkeitsmessungen die gewünschten cmc-Werte. Darüber hinaus kann aus den Leitfähigkeitsmessungen der Dissoziationsgrad der Mizellen bestimmt werden. Nicht nur wegen der aussagekräftigeren Ergebnisse, sondern auch wegen des geringen experimentellen Aufwands sind Leitfähigkeitsmessungen das optimale Werkzeug, um sowohl reine als auch technische ionische Tenside zu untersuchen.
References
1.Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd Edition, John Wiley & Sons, Inc.(2004). 10.1002/0471670561Search in Google Scholar
2.Schlarmann, J., Buchavzov, N. and Stubenrauch, C.: Soft Matter2(2006)584. 10.1039/b602975bSearch in Google Scholar
3.Lucassen-Reynders, E. H.: Anionic Surfactant: Physical Chemistry of Surfactant Action. Surfactant science series; V. 11, New York: Marcel Dekker, (1981).Search in Google Scholar
4.Esumi, K. and Ogiri, S.: Colloids and Surfaces A.94(1995)107. 10.1016/0927-7757(94)02998-8Search in Google Scholar
5.Emerson, M. F. and Holtzer, A.: J. Phys. Chem.71(1967)484.10.1016/S0022-3476(67)80319-6Search in Google Scholar
6.Shirahama, K., Hayashi, M. and Matuura, R.: Bull. Chem. Soc. Jap.42(1969)1206. 10.1246/bcsj.42.1206Search in Google Scholar
7.Huang, J.-B., Mao, M. and Zhu, B.-Y.: Colloids and Surfaces A.155(1999)339. 10.1016/S0927-7757(99)00003-5Search in Google Scholar
8.Patist, A., Bhagwat, S. S., Penfield, K. W., Aikens, P. and Shah, D. O.: Journal of Surfactants and Detergents.3(2000)53. 10.1007/s11743-000-0113-4Search in Google Scholar
9.Schlarmann, J., Stubenrauch, C. and Strey, R.: Phys. Chem. Chem. Phys.5(2003)184. 10.1039/b208899cSearch in Google Scholar
10.Monin, D., Espert, A. and Colin, A.: Langmuir.16(2000)3873. 10.1021/la981733oSearch in Google Scholar
11.Stubenrauch, C. and Khristov, K.: Journal of Colloid and Interface Science286(2005)710. 10.1016/j.jcis.2005.01.107Search in Google Scholar PubMed
12.Schick, M. J. and Fowkes, F. M.: J. Phys Chem.61(1957)1062. 10.1021/j150554a007Search in Google Scholar
13.Holmberg, K., Jönsson, B., Kronberg, B. and Lindman, B.: Surfactants and polymers in aqueous solution, John Wiley and Sons, England, (2004).Search in Google Scholar
14.Gilányi, T., Varga, I., Stubenrauch, C. and Mészáros, R.: J. Colloid Interface Sci.317(2008)395. 10.1016/j.jcis.2007.10.007Search in Google Scholar
15.Stubenrauch, C., Fainerman, V. B., Aksenenko, E. V. and Miller, R.: J. Phys. Chem. B.109(2005)1505. 10.1021/jp046525lSearch in Google Scholar
16.Bergeron, V.: Langmuir13(1997)3474. 10.1021/la970004qSearch in Google Scholar
17.Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems; National Bureau of Standards: Washington, DC, 1971.10.6028/NBS.NSRDS.36Search in Google Scholar
18.Zana, R.: J. Colloid Interface Sci.78(1980)330. 10.1016/0021-9797(80)90571-8Search in Google Scholar
19.Hoffmann, H. and Ulbricht, Y. N. F.: Z. Phys. Chem.106(1977)167. 10.1524/zpch.1977.106.3-6.167Search in Google Scholar
20.Basu Ray, G., Chakraborty, I., Ghosh, S., Moulik, S. P. and Palepu, R.: Langmuir21(2005)10958. 10.1021/la051509gSearch in Google Scholar PubMed
21.Ribeiro, A. C. F., Lobo, V. M. M., Valente, A. J. M., Azevedo, E. F. G., Miguel, M. da G. and Burrows, H. D.: Colloid Polym. Sci.283(2004)277. 10.1007/s00396-004-1136-xSearch in Google Scholar
22.Zhang, R., Zhang, L. and Somasundaran, P.: J. Colloid Interface Sci.278(2004)453. 10.1016/j.jcis.2004.06.045Search in Google Scholar PubMed
23.Chakraborty, T., Ghosh, S. and Moulik, S. P.: J. Phys. Chem. B.109(2005)14813. 10.1021/jp044580oSearch in Google Scholar PubMed
24.Mysels, K. J.: Langmuir12(1996)2325. 10.1021/la950882tSearch in Google Scholar
25.Miles, G. D. and Shedlovsky, L.: J. Phys. Chem.48(1944)57. 10.1021/j150433a007Search in Google Scholar
26.Magnus Johnson, C. and Tyrode, E.: Phys. Chem. Chem. Phys.7(2005)2635. 10.1039/b505219jSearch in Google Scholar PubMed
27.Lunkenheimer, K., Miller, R., Kretzschmar, G., Lerche, K.-H. and Becht, J.: Colloid Polym. Sci.262(1984)662. 10.1007/BF01452459Search in Google Scholar
28.Gilányi, T., Stergiopoulos, Chr. and Wolfram, E.: Colloids & Polymer Sci.254(1976)1018. 10.1007/BF01516920Search in Google Scholar
29.Pramauro, E. and Pelizzetti, E.: Surfactants in Analytical Chemistry: Applications of Organized Amphiphilic Media, Elsevier, Amsterdam, 1996.Search in Google Scholar
30.Varga, I., Mészáros, R. and Gilányi, T.: Journal of Physical Chemistry B.111(2007)7160. 10.1021/jp071344fSearch in Google Scholar PubMed
31.Chauhan, M. S., Kumari, N., Pathania, S., Sharma, K. and Kumar, G.: Colloids and Surfaces A.293(2007)157. 10.1016/j.colsurfa.2006.07.020Search in Google Scholar
32.Singh Bakshi, M.: Journal of Inclusion Phenomena and Macrocyclic Chemistry, 36(2000)39. 10.1023/A:1008151908273Search in Google Scholar
33.Marangoni, D. G., Rodenhiser, A. P., Thomas, J. M. and Kwak, J. C. T.: Langmuir9(1993)438. 10.1021/la00026a013Search in Google Scholar
34.De Lisi, R., Inglese, A., Milioto, S. and Pellerito, A.: J. Colloid Interface Sci.180(1996)174. 10.1006/jcis.1996.0287Search in Google Scholar
35.Flockhart, B. D.: J. Colloid Sci.16(1961)484. 10.1016/0095-8522(61)90026-5Search in Google Scholar
36.Carpena, P., Aguiar, J., Bernaola-Galván, P. and Carnero Ruiz, C.: Langmuir18(2002)6054. 10.1021/la025770ySearch in Google Scholar
37.Pérez-Rodríguez, M., Prieto, G., Rega, C., Varela, L.M., Sarmientio, F. and Mosquera, V.: Langmuir14(1998)4422. 10.1021/la980296aSearch in Google Scholar
38.Sugihara, G., Era, Y., Funatsu, M., Kunitake, T., Lee, S. and Sasaki, Y.: J. Colloid Interface Sci.187(1997)435. 10.1006/jcis.1996.4733Search in Google Scholar
39.García-Mateos, I., Velasquez, M. M. and Rodríguez, L. J.: Langmuir6(1996)1078. 10.1021/la00096a009Search in Google Scholar
40.Manabe, M., Kawamura, H., Yamashita, A. and Tokunaga, S.: J. Colloid Interface Sci.115(1987)147. 10.1016/0021-9797(87)90019-1Search in Google Scholar
41.Porter, M. R.: The Handbook of Surfactants; 2. Edition, Chapman & Hall, 1994. 10.1007/978-94-011-1332-8Search in Google Scholar
42.Falbe, J.: Surfactants in Consumer Products, Springer Verlag, Berlin, (1987). 10.1007/978-3-642-71545-7Search in Google Scholar
© 2008, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Detergent Ingredient
- Quantitative Determination of Tetraacetylethylenediamine in Laundry Powder by FTIR Spectrometry Using Partial Least Squares Algorithm
- Physical Chemistry
- Conductivity Measurements as a Method for Studying Ionic Technical Grade Surfactants
- Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney Nickel in the Presence of Different Surfactants
- Phase Separation Study of a Surface-Active Drug, Promazine Hydrochloride, in Presence of Surfactants and Ureas
- Surface Activity of Newly Nonionic Surfactants at Air/Water Interface and their Interaction with Clay and Teflon
- Review Article
- 50 Years of Environmental Monitoring at Henkel
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Detergent Ingredient
- Quantitative Determination of Tetraacetylethylenediamine in Laundry Powder by FTIR Spectrometry Using Partial Least Squares Algorithm
- Physical Chemistry
- Conductivity Measurements as a Method for Studying Ionic Technical Grade Surfactants
- Electrocatalytic Hydrogenation and Hydrogenolysis of Aromatic Halides by Raney Nickel in the Presence of Different Surfactants
- Phase Separation Study of a Surface-Active Drug, Promazine Hydrochloride, in Presence of Surfactants and Ureas
- Surface Activity of Newly Nonionic Surfactants at Air/Water Interface and their Interaction with Clay and Teflon
- Review Article
- 50 Years of Environmental Monitoring at Henkel