Home Conductivity Measurements as a Method for Studying Ionic Technical Grade Surfactants
Article
Licensed
Unlicensed Requires Authentication

Conductivity Measurements as a Method for Studying Ionic Technical Grade Surfactants

  • E. Carey , S. R. Patil and C. Stubenrauch
Published/Copyright: April 2, 2013
Become an author with De Gruyter Brill

Abstract

The critical micellar concentrations (cmc) of cationic alkyltrimethylammonium bromides (C10TAB – C16TAB) and of anionic alkyl sulfates (SDS, technical grade Sulfopon 12G and Sulfopon 1214G) were determined using specific conductivity and surface tension measurements. While the cationic surfactants were purified, the anionic surfactants were used as received. In the former case, surface tension and conductivity measurements lead to the same cmc values. In the latter case, measuring the specific conductivities (bulk property) proved to be superior compared to measuring the surface tensions (surface property) because the presence of highly surface active impurities creates a pronounced minimum in the surface tension isotherm, which makes it impossible to determine an accurate value for the cmc. On the other hand, these impurities do not influence the conductivities, i. e. that the conductivities can be used to determine cmc values of impure and technical grade ionic surfactants, respectively. Moreover, an evaluation of the specific conductivities allows for the determination of the degree of micelle ionization (α) of the ionic surfactant solutions and thus provides additional useful information.

Kurzfassung

Um die kritischen Mizellbildungskonzentrationen (cmc) kationischer Alkyltrimethylammoniumbromide (C10TAB – C16TAB) sowie anionischer Alkylsulfate (SDS, technisches Sulfopon 12G und Sulfopon 1214G) zu bestimmen, wurden spezifische Leitfähigkeiten sowie Oberflächenspannungen gemessen. Die kationischen Tenside sind gereinigt worden, während die anionischen nicht weiter aufgearbeitet wurden. Es zeigte sich im Falle der CnTAB Reihe, dass beide Messmethoden zum gleichen Ergebnis führen. Bei den anionischen Tensiden konnte mittels Oberflächenspannungen keine Aussage über die cmc gemacht werden, da das durch Verunreinigungen verursachte Minimum ein Auswerten der Kurven unmöglich macht. Hingegen lieferten Leitfähigkeitsmessungen die gewünschten cmc-Werte. Darüber hinaus kann aus den Leitfähigkeitsmessungen der Dissoziationsgrad der Mizellen bestimmt werden. Nicht nur wegen der aussagekräftigeren Ergebnisse, sondern auch wegen des geringen experimentellen Aufwands sind Leitfähigkeitsmessungen das optimale Werkzeug, um sowohl reine als auch technische ionische Tenside zu untersuchen.


Enda Carey, University College Dublin, School of Chemical and Bioprocess Engineering, Belfield, Dublin 4, Ireland, Tel.: +353-1-716-1691, Fax: +353-1-716-1177. E-mail:

Enda Carey studied chemical engineering at University College Dublin (Ireland) and received his B. E. in 2006. Since 2007, he is pursuing Ph. D at the School of Chemical & Bioprocess Engineering, University College Dublin (Ireland).

Dr. Sandeep R. Patil studied chemistry at the M. S. University of Baroda (India) and received his Ph. D in Chemistry in 2005. Thereafter, he did post doctoral research for a year at Université Pierre et Marie Curie (France). Since September 2006, he is a post doctoral researcher at the School of Chemical and Bioprocess Engineering, University College Dublin (Ireland).

Dr. habil. Cosima Stubenrauch studied chemistry at the universities of Münster and Freiburg (Germany) and received her Ph. D in Physical Chemistry at the TU Berlin (Germany) in 1997. After a postdoctoral year at the Université Paris Sud (France), she worked as an associate researcher and lecturer at the Institute of Physical Chemistry at the University of Cologne (Germany) from 1999–2004. Since 2005 she has a position at the University College Dublin (Ireland).


References

1.Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd Edition, John Wiley & Sons, Inc.(2004). 10.1002/0471670561Search in Google Scholar

2.Schlarmann, J., Buchavzov, N. and Stubenrauch, C.: Soft Matter2(2006)584. 10.1039/b602975bSearch in Google Scholar

3.Lucassen-Reynders, E. H.: Anionic Surfactant: Physical Chemistry of Surfactant Action. Surfactant science series; V. 11, New York: Marcel Dekker, (1981).Search in Google Scholar

4.Esumi, K. and Ogiri, S.: Colloids and Surfaces A.94(1995)107. 10.1016/0927-7757(94)02998-8Search in Google Scholar

5.Emerson, M. F. and Holtzer, A.: J. Phys. Chem.71(1967)484.10.1016/S0022-3476(67)80319-6Search in Google Scholar

6.Shirahama, K., Hayashi, M. and Matuura, R.: Bull. Chem. Soc. Jap.42(1969)1206. 10.1246/bcsj.42.1206Search in Google Scholar

7.Huang, J.-B., Mao, M. and Zhu, B.-Y.: Colloids and Surfaces A.155(1999)339. 10.1016/S0927-7757(99)00003-5Search in Google Scholar

8.Patist, A., Bhagwat, S. S., Penfield, K. W., Aikens, P. and Shah, D. O.: Journal of Surfactants and Detergents.3(2000)53. 10.1007/s11743-000-0113-4Search in Google Scholar

9.Schlarmann, J., Stubenrauch, C. and Strey, R.: Phys. Chem. Chem. Phys.5(2003)184. 10.1039/b208899cSearch in Google Scholar

10.Monin, D., Espert, A. and Colin, A.: Langmuir.16(2000)3873. 10.1021/la981733oSearch in Google Scholar

11.Stubenrauch, C. and Khristov, K.: Journal of Colloid and Interface Science286(2005)710. 10.1016/j.jcis.2005.01.107Search in Google Scholar PubMed

12.Schick, M. J. and Fowkes, F. M.: J. Phys Chem.61(1957)1062. 10.1021/j150554a007Search in Google Scholar

13.Holmberg, K., Jönsson, B., Kronberg, B. and Lindman, B.: Surfactants and polymers in aqueous solution, John Wiley and Sons, England, (2004).Search in Google Scholar

14.Gilányi, T., Varga, I., Stubenrauch, C. and Mészáros, R.: J. Colloid Interface Sci.317(2008)395. 10.1016/j.jcis.2007.10.007Search in Google Scholar

15.Stubenrauch, C., Fainerman, V. B., Aksenenko, E. V. and Miller, R.: J. Phys. Chem. B.109(2005)1505. 10.1021/jp046525lSearch in Google Scholar

16.Bergeron, V.: Langmuir13(1997)3474. 10.1021/la970004qSearch in Google Scholar

17.Mukerjee, P. and Mysels, K. J.: Critical Micelle Concentrations of Aqueous Surfactant Systems; National Bureau of Standards: Washington, DC, 1971.10.6028/NBS.NSRDS.36Search in Google Scholar

18.Zana, R.: J. Colloid Interface Sci.78(1980)330. 10.1016/0021-9797(80)90571-8Search in Google Scholar

19.Hoffmann, H. and Ulbricht, Y. N. F.: Z. Phys. Chem.106(1977)167. 10.1524/zpch.1977.106.3-6.167Search in Google Scholar

20.Basu Ray, G., Chakraborty, I., Ghosh, S., Moulik, S. P. and Palepu, R.: Langmuir21(2005)10958. 10.1021/la051509gSearch in Google Scholar PubMed

21.Ribeiro, A. C. F., Lobo, V. M. M., Valente, A. J. M., Azevedo, E. F. G., Miguel, M. da G. and Burrows, H. D.: Colloid Polym. Sci.283(2004)277. 10.1007/s00396-004-1136-xSearch in Google Scholar

22.Zhang, R., Zhang, L. and Somasundaran, P.: J. Colloid Interface Sci.278(2004)453. 10.1016/j.jcis.2004.06.045Search in Google Scholar PubMed

23.Chakraborty, T., Ghosh, S. and Moulik, S. P.: J. Phys. Chem. B.109(2005)14813. 10.1021/jp044580oSearch in Google Scholar PubMed

24.Mysels, K. J.: Langmuir12(1996)2325. 10.1021/la950882tSearch in Google Scholar

25.Miles, G. D. and Shedlovsky, L.: J. Phys. Chem.48(1944)57. 10.1021/j150433a007Search in Google Scholar

26.Magnus Johnson, C. and Tyrode, E.: Phys. Chem. Chem. Phys.7(2005)2635. 10.1039/b505219jSearch in Google Scholar PubMed

27.Lunkenheimer, K., Miller, R., Kretzschmar, G., Lerche, K.-H. and Becht, J.: Colloid Polym. Sci.262(1984)662. 10.1007/BF01452459Search in Google Scholar

28.Gilányi, T., Stergiopoulos, Chr. and Wolfram, E.: Colloids & Polymer Sci.254(1976)1018. 10.1007/BF01516920Search in Google Scholar

29.Pramauro, E. and Pelizzetti, E.: Surfactants in Analytical Chemistry: Applications of Organized Amphiphilic Media, Elsevier, Amsterdam, 1996.Search in Google Scholar

30.Varga, I., Mészáros, R. and Gilányi, T.: Journal of Physical Chemistry B.111(2007)7160. 10.1021/jp071344fSearch in Google Scholar PubMed

31.Chauhan, M. S., Kumari, N., Pathania, S., Sharma, K. and Kumar, G.: Colloids and Surfaces A.293(2007)157. 10.1016/j.colsurfa.2006.07.020Search in Google Scholar

32.Singh Bakshi, M.: Journal of Inclusion Phenomena and Macrocyclic Chemistry, 36(2000)39. 10.1023/A:1008151908273Search in Google Scholar

33.Marangoni, D. G., Rodenhiser, A. P., Thomas, J. M. and Kwak, J. C. T.: Langmuir9(1993)438. 10.1021/la00026a013Search in Google Scholar

34.De Lisi, R., Inglese, A., Milioto, S. and Pellerito, A.: J. Colloid Interface Sci.180(1996)174. 10.1006/jcis.1996.0287Search in Google Scholar

35.Flockhart, B. D.: J. Colloid Sci.16(1961)484. 10.1016/0095-8522(61)90026-5Search in Google Scholar

36.Carpena, P., Aguiar, J., Bernaola-Galván, P. and Carnero Ruiz, C.: Langmuir18(2002)6054. 10.1021/la025770ySearch in Google Scholar

37.Pérez-Rodríguez, M., Prieto, G., Rega, C., Varela, L.M., Sarmientio, F. and Mosquera, V.: Langmuir14(1998)4422. 10.1021/la980296aSearch in Google Scholar

38.Sugihara, G., Era, Y., Funatsu, M., Kunitake, T., Lee, S. and Sasaki, Y.: J. Colloid Interface Sci.187(1997)435. 10.1006/jcis.1996.4733Search in Google Scholar

39.García-Mateos, I., Velasquez, M. M. and Rodríguez, L. J.: Langmuir6(1996)1078. 10.1021/la00096a009Search in Google Scholar

40.Manabe, M., Kawamura, H., Yamashita, A. and Tokunaga, S.: J. Colloid Interface Sci.115(1987)147. 10.1016/0021-9797(87)90019-1Search in Google Scholar

41.Porter, M. R.: The Handbook of Surfactants; 2. Edition, Chapman & Hall, 1994. 10.1007/978-94-011-1332-8Search in Google Scholar

42.Falbe, J.: Surfactants in Consumer Products, Springer Verlag, Berlin, (1987). 10.1007/978-3-642-71545-7Search in Google Scholar

Received: 2007-12-21
Published Online: 2013-04-02
Published in Print: 2008-05-01

© 2008, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.100368/html
Scroll to top button