Startseite New Hydroxylated Cationic Gemini Surfactants as Effective Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New Hydroxylated Cationic Gemini Surfactants as Effective Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Medium

  • V. Sharma , M. Borse , S. Jauhari , K. B. Pai und S. Devi
Veröffentlicht/Copyright: 8. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inhibitory action of hydroxylated cationic gemini surfactants on corrosion of mild steel [MS] in 1 M hydrochloric acid medium is studied by gravimetric, electrochemical polarization and electrochemical impedance spectroscopic (EIS) techniques. The results obtained reveal that these compounds are very efficient inhibitors. The inhibitory action of surfactants increases with the concentration and chain length. Concentration as low as 10−5 M of 16–4–16 MEA could show 99% inhibition whereas 12–4–12 MEA showed 93% inhibition at 10−4 M concentration. The inhibition efficiency versus concentration curves show an S-shape plot indicating adsorption of surfactants on metal surface as a three steps process. From Arrhenius plots corrosion rate of MS was observed to decrease at any given temperature with inhibitor concentration due to the increase in the degree of surface coverage. In contrast, at constant inhibitor concentration, the corrosion rate increases with temperature. EIS measurements show increase in the charge transfer resistance with the inhibitor concentration.

Kurzfassung

Die Inhibitorenaktivität von hydroxylierten kationischen Gemini-Tensiden auf die Korrosion von Flussstahl in 1 M salzsaurer Lösung wurde gravimetrisch, mittels elektrochemischer Polarisation und elektrochemischer Impedanz Spektroskopie (EIS) untersucht. Die Resultate zeigen, dass diese Verbindungen sehr effiziente Inhibitoren darstellen. Die Inhibitorenaktivität steigt mit der Konzentration und der Kettenlänge. Eine Konzentration von 10−5 M bei 16–4–16 MEA zeigt eine Inhibierung von 99%, bei 12–4–12 MEA mit einer Konzentration von 10−4 M dagegen 93%. Die Darstellung der Inhibierungsleistung gegen die Konzentration ergibt einen s-förmigen Kurvenverlauf, der die Adsorption der Tenside an der Metalloberfläche als einen dreistufigen Prozess anzeigt. Aufgrund des Grades der Oberflächenabdeckung wurde durch Arrhenius Plots ein Abfall der Korrosionsrate von Flussstahl mit der Inhibitorenkonzentration bei jeder vorgegebenen Temperatur beobachtet. Dagegen erhöht sich die Korrosionsrate mit der Temperatur bei konstanter Inhibitorenkonzentration. EIS-Messungen zeigen eine Erhöhung in der Charge-Transfer Resistenz mit der Inhibitorenkonzentration.


4Prof. Surekha Devi, Head, Department of Chemistry Faculty of Science M.S. University of Baroda Vadodara (3390 002) Gujarat, India Tel. Nos: 91–2 65–2 79 55 52 (Office) 91–2 65–2 25 10 98 (Residence) Fax No: 91–2 65–2 79 55 52 (Office) E-mail:

Dr. Surekha Devi is a Professor of Chemistry at Maharaja Sayajirao University of Baroda in India. She has spent considerable time as visiting Professor at University of Florida,-Gainsville USA, University of Hull UK, University of leeds UK and M.S.S.I. Limerick University Ireland. Her research interests are Polymer Chemistry and Surfactants.

Vikas Sharma is a research student working for his Ph.D. and is also a Teaching assistant at M.S. University, Baroda.

Mahendra Borse is a research student working for his Ph.D. and is also a Teaching assistant at M.S. University, Baroda.

Dr. Smita Johri is a temporary lecturer working in Applied Chemistry Department of M.S. University, Baroda. She has worked in the area of Corrosion.

Dr. K. Baba Pai, B.E., M.E., Ph.D. (IIT Mumbai) in Metallurgical Engineering and Professor of Metallurgy at Faculty of Technology and Engineering, MS. University, Baroda. His specialization topics are Electro-metallurgy and corrosion, Extractive metallurgy and surface engineering.

Authors are grateful to Department of Science and Technology, New Delhi and IUC-DAEF Mumbai for the financial support.


References

1. Upke, U., Ibok, U., Ita, B., Offiong, O. and Ebenso, E.: Mater. Chem. Phys.40 (1995) 87.Suche in Google Scholar

2. Toschihiro, F., Tokiwa, Hiroki, Ichikawa, Hiroschi, Shimoda and Hiroyuki: Theochem. J. Mol. Struct.96 (1992) 251.Suche in Google Scholar

3. Brooke, M.: Chemical Engineering69 (1962) 19.10.1016/0300-9467(86)85008-0Suche in Google Scholar

4. Sanyal, B.: J. Prog. Org. Coatings9 (1981) 165.Suche in Google Scholar

5. Zucchi, F., Trabanelli, G. and Brunoro, G.: Corros Sci.33 (1992) 1135.Suche in Google Scholar

6. Frignani, A., Tassinari, M., Meszaros, L. and Trabanelli, G.: Corros Sci.32 (1991) 19.Suche in Google Scholar

7. Abdel-Hamid, Z., Soror, T. Y., El-Dahan and Omar, A. M. A.: Anti-Corrosion Methods and Materials45 (1998) 306.Suche in Google Scholar

8. Osman, M. M.: Anti-Corrosion Methods and Materials45 (1998) 176.Suche in Google Scholar

9. El Achouri, M., Hajji, M. S., Kertit, S., Essassi, E. M., Salem, M. and Coudert, R.: Corros Sci.37 (1995) 381.Suche in Google Scholar

10. Free, M. L.: Corrossion Sci44 (2002) 2865.Suche in Google Scholar

11. Vasudevan, T., Muralidharan, S., Alwarappan, S. and Iyer, S.V.K.: Corros Sci.37 (1995) 1235.Suche in Google Scholar

12. El Achouri, M., Kertit, S., Gouttaya, H. M., Nciri, B., Bensouda, Y., Perez, L., Infante, M. R. and Elkacemi, K.: Prog. Org. Coatings43 (2001) 267.Suche in Google Scholar

13. El Achouri, M., Kertit, S., Gouttaya, H. M., Nciri, B., Bensouda, Y., Perez, L., Infante, M. R. and Izquierdo, F.: Corros Sci.43 (2001) 19.Suche in Google Scholar

14. Rosen, M. J.: Chemtech23 (1993) 30.Suche in Google Scholar

15. Zana, R.: in: Structure–Performance relationship in surfactants, Esumin, K.; Ueno, M. (Eds.); M. Dekker Inc, New York, 1997, Chap 6, p.255, and references therein.Suche in Google Scholar

16. Menger, F. M. and Keiper, J. S.: Angewandte Chemie, International Edition39 (2000) 1907.10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSuche in Google Scholar

17. Zana, R.: Advances in Colloid and Interface Sci.97 (2002) 203.Suche in Google Scholar

18. Sharma, V., Borse, M., Aswal, V. K., Pokhriyal, N. K., Joshi, J. V., Goyal, P. S. and Devi, S.: Journal of Colloid and Interface Science5 (2004) 450.Suche in Google Scholar

19. Borse, M., Sharma, V., Aswal, V. K., Goyal, P.S. and Devi, S.: Physical Chemistry Chemical Physics6 (2004) 3508.Suche in Google Scholar

20. Abdel-Hamid, Z.: Anti-Corrosion Methods and Materials44 (1997) 389.Suche in Google Scholar

21. Hajji, S. M., Azize, B., Cao, A., Coudert, R., Hantz, E., Durand, R. R. and Taillandier, E.: J. Phys. Chem.94 (1990) 7224.Suche in Google Scholar

22. Bockris, J. O. M. and Srinivasan, S.: Electrochim. Acta31 (1964) 9.Suche in Google Scholar

23. Bockris, J. O. M. and Reddy, A. K. N.: Modern Electrochemistry, Third printing, Vol. 2, Plenum Press, NewYork, NY (1972) p. 1007.Suche in Google Scholar

24. Moretti, G., Quartarone, G., Tassan, A. and Zingales, A.: Workst, Korros.45 (1994) 5.Suche in Google Scholar

Received: 2004-10-18
Published Online: 2013-05-08
Published in Print: 2005-06-01

© 2005, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.100253/html
Button zum nach oben scrollen