Mesoscale Computer Simulations on the Phase Behavior of the Non-Ionic Surfactant C12E5
-
S. G. Schulz
, U. Frieske , H. Kuhn , G. Schmid , F. Müller , C. Mund and J. Venzmer
Abstract
Dissipative Particle Dynamics is a mesoscopic simulation method which allows to predict the self-assembly of amphiphilic polymers and surfactants. It was possible to reproduce the phase behavior of the non-ionic surfactant C12E5 in water. The three different phases L1, La and L2 could be characterized with Dissipative Particle Dynamics.
Kurzfassung
Die Dissipative Partikel Dynamik ist eine mesoskopische Simulationsmethode, die eine Vorhersage der Selbstanordung von amphiphilen Polymeren und Tensiden erlaubt. Es war möglich das Phasenverhalten des nichtionogenen Tensids C12E5 in Wasser zu reproduzieren. Die drei unterschiedlichen Phasen L1, La und L2 konnten mit der Dissipativen Partikel Dynamik charakterisiert werden.
References
1 Schulz, S. G., Kuhn, H., Schmid, G., Mund, C. and Venzmer, J.: J Colloid Polym Sci (2004), in press.Search in Google Scholar
2 Ryjkina, E., Kuhn, H., Rehage, H.Müller, F. and Peggau, J.: Angew. Chemie114 (2002) 1025.10.1002/1521-3757(20020315)114:6<1025::AID-ANGE1025>3.0.CO;2-HSearch in Google Scholar
3 Jury, S., Bladon, P., Cates, M., Krishna, S., Hagen, M., Ruddock, N. and Warren, P.: Phys. Chem. Chem. Phys.1 (1999) 205.10.1039/a809824gSearch in Google Scholar
4 Espagnol, P. and Warren, P.: Europhys. Lett.30 (1995) 191.10.1209/0295-5075/30/4/001Search in Google Scholar
5 Hoogerbrugge, P. and Koelman, J.: Europhys. Lett.19 (1992) 155.10.1209/0295-5075/19/3/001Search in Google Scholar
6 Groot, R. D. and WarrenP. B.: J. Chem. Phys.107 (1997) 4423.10.1063/1.474784Search in Google Scholar
7 Tonegawa, A., Ohno, K., Matsuura, H., Yamada, K. and Okuda, T.: J. Phys. Chem. B106 (2002) 13211.10.1021/jp021760uSearch in Google Scholar
8 Flory, P.: Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953).Search in Google Scholar
9 Fan, C., Olafson, B., Blanco, M. and Hsu, H.: Macromolecules25 (1992) 3667.10.1021/ma00040a010Search in Google Scholar
10 Sun, H.: J. Phys. Chem.102 (1998) 7338.Search in Google Scholar
© 2004, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Gypsum Scale Formation on Heat Exchanger Surfaces: The Influence of Natural and Synthetic Polyelectrolytes
- Oilfield Applications of Anionic Alkylpolyglucosides
- Dynamic Interfacial Behavior of Decyl Methylnaphthalene Sulfonate Surfactants for Enhanced Oil Recovery
- GDCH Special Group Meeting
- Mesoscale Computer Simulations on the Phase Behavior of the Non-Ionic Surfactant C12E5
- Physical Chemistry
- Structure-Activity Relationships for Sorption of Alkyl Trimethyl Ammonium Compounds on Activated Sludge
- Technical Chemistry
- Design Criteria, Mechanical Features, Advantages and Performances of Multitube Falling Film Sulphonation Reactor
Articles in the same Issue
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- Gypsum Scale Formation on Heat Exchanger Surfaces: The Influence of Natural and Synthetic Polyelectrolytes
- Oilfield Applications of Anionic Alkylpolyglucosides
- Dynamic Interfacial Behavior of Decyl Methylnaphthalene Sulfonate Surfactants for Enhanced Oil Recovery
- GDCH Special Group Meeting
- Mesoscale Computer Simulations on the Phase Behavior of the Non-Ionic Surfactant C12E5
- Physical Chemistry
- Structure-Activity Relationships for Sorption of Alkyl Trimethyl Ammonium Compounds on Activated Sludge
- Technical Chemistry
- Design Criteria, Mechanical Features, Advantages and Performances of Multitube Falling Film Sulphonation Reactor