Optimization of Current, Voltage and Powder Feed Rate on Mechanical Properties of Plasma Transferred Arc Welded SS 316 Joints
-
M. Ravichandran
Abstract
Plasma Transferred Arc Welding (PTAW) process parameters were optimized for joining 316 stainless-steel plates to produce weld joints with maximum tensile strength, impact strength and hardness. Taguchi technique was applied for optimizing the selected welding parameters such as welding current (I), welding voltage (V) and powder feed rate (PFR). L9 orthogonal array was selected according to the aforementioned factors with three levels and experimental tests were performed. Signal-to-noise (SN) ratio was used to evaluate the experimental results. The results indicate that the welding voltage has the greatest infiuence on tensile & impact strength and welding current is the significant factor for hardness.
Kurzfassung
Für die Verbindung von 316-Edelstahl-Platten wurden die Prozessparameter des Plasma-Pulver-Auftragsschweißens optimiert, um geschweißte Werkstücke mit maximaler Zugfestigkeit, Schlagzähigkeit und Härte herzustellen. Dabei wurde die Taguchi-Technik angewendet, um die ausgewählten Schweißparameter wie Schweißstromstärke (I), Schweißspannung (V) und die Pulverzufuhr (PFR) zu optimieren. Es wurde ein L9 orthogonales Feld gewählt, bezogen auf die vorgenannten Faktoren mit drei Ebenen und experimentelle Untersuchungen wurden durchgeführt. Mittels der Signal-Rausch-Verhältnisse wurden die experimentellen Ergebnisse evaluiert. Die Ergebnisse zeigen, dass die Schweißspannung den größten Einfluss auf Zugfestigkeit und Schlagzähigkeit hat, während die Schweißstromstärke für die Härte von Bedeutung ist.
References
1. Molak, R. M.; Paradowski, K.; Brynk, T.; Ciupinski, L.; Pakiela, Z.; Kurzydlowsky, K. J.: Measurement of mechanical properties in 316L stainless steel welded joint. Int. J. Pressure Vessels Piping.86 (2009) 1, pp. 43–47, 10.1016/j.ijpvp.2008.11.002Search in Google Scholar
2. Bong, H. J.; Barlat, F.; Ahn, D. C.; Kim, H.-Y.; Leen, M.-G.: Formability of austenitic and ferritic stainless steels at warm forming temperature. Int. J. Mech. Sci.75 (2013), pp. 94–109, 10.1016/j.ijmecsci.2013.05.017Search in Google Scholar
3. Feng, Y.; Luo, Z.; Liu, Z.; Li, Y.; Luo, Y.; Huang, Y.: Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater. Design.85 (2015), pp. 24–31, 10.1016/j.matdes.2015.07.011Search in Google Scholar
4. Branagan, D. J.; Marshall, M. C.; Meacham, B. E.: High toughness high hardness iron based PTAW weld materials. Mater. Sci. Eng. A.428 (2006) 1–2), pp. 116–123, 10.1016/j.msea.2006.04.089Search in Google Scholar
5. Jian, X.; Wu, C. S.: Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding. Int. J. Heat Mass Trans.84 (2015), pp. 839–847, 10.1016/j.ijheatmasstransfer.2015.01.069Search in Google Scholar
6. Zhang, G.; Wu, C. S.; Liu, X.: Single vision system for simultaneous observation of keyhole and weld pool in plasma arc welding. J. Mater. Proc. Tech.215 (2015), pp. 71–78, 10.1016/j.jmatprotec.2014.07.033Search in Google Scholar
7. Li, K.; Wu, Z.; Liu, C.: Measurement and calculation of plasma drag force in arc welding based on high-speed photography technology and particle dynamics. Mater. Design.85 (2015), pp. 97–101, 10.1016/j.matdes.2015.06.156Search in Google Scholar
8. Rokanopoulou, A.; Skarvelis, P.; Papadimitriou, G. D.: Microstructure and wear properties of the surface of 2205 duplex stainless steel reinforced with Al2O3 particles by the plasma transferred arc technique. Surf. Coat. Tech.254 (2014), pp. 376–381, doi.org/10.1016/j.surfcoat.2014.06.047Search in Google Scholar
9. Sathiya, P.; Panneerselvam, K.; Abdul Jaleel, M. Y.: Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater. Design.36 (2012), pp. 490–498, 10.1016/j.matdes.2011.11.028Search in Google Scholar
10. Juang, S. C.; Tarng, Y. S.: Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. J. Mater. Process Tech.122 (2002) 1, pp. 33–37, 10.1016/S0924-0136(02)00021-3Search in Google Scholar
11. Sathiya, P.; Abdul Jaleel, M. Y.; Katherasan, D.; Shanmugarajan, B.: Optimization of laser butt welding parameters with multiple performance characteristics. Opt. Laser Technol.43 (2011) 3, pp. 660–673, 10.1016/j.optlastec.2010.09.007Search in Google Scholar
12. Yang, D.; Li, X.; He, D.; Nie, Z.-R.; Huang, H.: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi's approach. Opt. Laser Technol.44 (2012) 7, pp. 2020–2025, 10.1016/j.optlastec.2012.03.033Search in Google Scholar
13. Ravichandran, M.; Thirunavukkarasu, M.; Sathish, S.; Anandakrishnan, V.: Optimization of welding parameters to attain maximum strength in friction stir welded AA7075 joints. Mater. Test.58 (2016) 3, pp. 206–210, 10.3139/120.110838Search in Google Scholar
14. Balasubramanian, V.; Lakshminarayanan, A. K.; Varahamoorthy, R.; Babu, S.: Application of response surface methodology to prediction of dilution in plasma transferred arc hard facing of stainless steel on carbon steel. J. Iron Steel Res. Int.16 (2009) l, pp. 44–53, 10.1016/S1006-706X(09)60009-1Search in Google Scholar
15. Zhang, G.; Wu, C. S.; Liu, X.: Single vision system for simultaneous observation of keyhole and weld pool in plasma arc welding. J. Mater. Proc. Technol.215 (2015), pp. 71–78, 10.1016/j.jmatprotec.2014.07.033Search in Google Scholar
16. Baharath, P.; Sridhar, V. G.; Kumar, Senthil M.: Optimization of 316 stainless steel weld joint characteristics using Taguchi technique. Procedia Eng.97 (2014), pp. 881–891, 10.1016/j.proeng.2014.12.363Search in Google Scholar
17. Ravichandran, M.; Anandakrishnan, V.: Optimization of P/M parameters to attain maximum strength in Al-10wt.% MoO3 composite. J. Mater. Res.30 (2015) 15, pp. 2380–2387, 10.1557/jmr.2015.211Search in Google Scholar
18. Bilici, M. K.; Yükler, A. I.; Kurtulmuş, M.: The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater. Design.32 (2011) 7, pp. 4074–4079, 10.1016/j.matdes.2011.03.014Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Fachbeiträge/Technical Contributions
- AWT-Seminare 2018
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- CarboBain: Case Hardening by Carbo-Austempering–a short Introduction to Transformation Kinetics, Microstructure and Residual Stresses*
- A Novel Approach of Plasma Nitrocarburizing Using a Solid Carbon Active Screen – a Proof of Concept
- Fixturhärten ohne Abschrecköl
- Virtual Optimization of Process and Material Properties for ADI*
- Schleifbarkeit mehrphasiger, einsatzgehärteter Zahnräder mit erhöhtem Restaustenitgehalt
- Die Wirkmechanismen mikrobiell basierter Kühlschmierstoffe
- Optimization of Current, Voltage and Powder Feed Rate on Mechanical Properties of Plasma Transferred Arc Welded SS 316 Joints
Articles in the same Issue
- Fachbeiträge/Technical Contributions
- AWT-Seminare 2018
- HTM-Praxis
- HTM-Praxis
- Kurzfassungen/Abstracts
- Kurzfassungen
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- CarboBain: Case Hardening by Carbo-Austempering–a short Introduction to Transformation Kinetics, Microstructure and Residual Stresses*
- A Novel Approach of Plasma Nitrocarburizing Using a Solid Carbon Active Screen – a Proof of Concept
- Fixturhärten ohne Abschrecköl
- Virtual Optimization of Process and Material Properties for ADI*
- Schleifbarkeit mehrphasiger, einsatzgehärteter Zahnräder mit erhöhtem Restaustenitgehalt
- Die Wirkmechanismen mikrobiell basierter Kühlschmierstoffe
- Optimization of Current, Voltage and Powder Feed Rate on Mechanical Properties of Plasma Transferred Arc Welded SS 316 Joints