Home Energy Resolved Residual Stress Analysis with Laboratory X-Ray Sources
Article
Licensed
Unlicensed Requires Authentication

Energy Resolved Residual Stress Analysis with Laboratory X-Ray Sources

  • A. Liehr , W. Zinn , S. Degener , B. Scholtes , T. Niendorf and C. Genzel
Published/Copyright: April 17, 2017

Abstract

It is well known that existing residual stress fields play an important role for strength and lifetime of components. Consequently there is a great interest in the availability of fast, reliable and possibly nondestructive methods for their determination. In this context, X-ray diffraction methods play an important role in technical practice as well as in scientific research. They are based on the determination of lattice strains from which residual stresses are determined applying Hooke's law with appropriate elastic constants. In this paper – after a short survey of the basic principles – characteristic features of energy resolved methods for laboratory applications compared with angle resolved methods are outlined. A corresponding measuring device is presented and characteristic examples are given to demonstrate the possibilities and limitations of the method.

Kurzfassung

Aufgrund der Bedeutung, die Eigenspannungen für die Zuverlässigkeit und Beanspruchbarkeit von Komponenten besitzen, besteht ein großes Interesse an der Verfügbarkeit schneller, zuverlässiger und möglichst zerstörungsfreier Messverfahren. In diesem Zusammenhang kommt heute röntgenographischen Verfahren eine besondere Bedeutung in der Praxis zu. Sie basieren auf der Messung von Gitterdeformationen, aus denen unter Verwendung elastischer Konstanten Spannungen berechnet werden. In der vorliegenden Arbeit wird – nach einer kurzen Einführung in die Grundlagen – gezeigt, welche Besonderheiten bei energieauflösenden Verfahren im Vergleich zu den etablierten winkelauflösenden Verfahren bei der Anwendung im Labor bzw. einem industriellen Umfeld existieren. Ein entsprechendes Gerät mit seinen Möglichkeiten wird vorgestellt und anhand kennzeichnender Beispiele werden die zurzeit bestehenden Möglichkeiten und Grenzen energieauflösender Eigenspannungsanalysen aufgezeigt


4 (Corresponding author/Kontakt)

References

1. Totten, G.; Howes, M.; Inoue, T. (eds.): Handbook of Residual Stress and Deformation of Steel. ASM Int., Materials Park, Ohio, USA, 2002Search in Google Scholar

2. Lu, J. (ed.): Handbook on Residual Stress. Vols. 1 and 2, Society for Experimental Mechanics (SEM), Bethel, USA, 2005Search in Google Scholar

3. Scholtes, B.: Residual Stresses. In: Encyclopedia of Iron, Steel, and Their Alloys, G. E.Totten, R.Colas (Eds.), Taylor & Francis, 2015, pp. 30053023, 10.1081/E-EISA-120048851Search in Google Scholar

4. Scholtes, B.: Assessment of Residual Stresses. In: Structural and Residual Stress Analysis by Nondestructive Methods, V.Hauk (ed.), Elsevier, Amsterdam, NL, 1997, pp. 59063710.1016/B978-044482476-9/50020-7Search in Google Scholar

5. Macherauch, E.: Residual Stresses. In: Application of Fracture Mechanics to Materials and Structures, G. C.Sih et al. (eds.), Martinus Nijhoff Publ., The Hague, NL, 1984, pp. 15719210.1007/978-94-009-6146-3_7Search in Google Scholar

6. Ainsworth, R. A.: The treatment of thermal and residual stresses in fracture assessments. Engn. Fract. Mech.24 (1986) 1, pp. 6576, 10.1016/0013-7944(86)90008-1Search in Google Scholar

7. Schajer, G. S. (ed.): Practical Residual Stress Measuring Methods. Wiley, Chichester, UK, 201310.1002/9781118402832Search in Google Scholar

8. Withers, P. J.; Bhadeshia, H. K.: Residual Stress, Part 1: Measurement Techniques. Mat. Sci. Techn.17 (2001) 4, pp. 355356, 10.1179/026708301101509980Search in Google Scholar

9. Standard ASTM E837-08: Standard Test Method for Determining Residual Stresses by the Hole Drilling Strain-Gage Method. American Society for Testing and Materials, 2008Search in Google Scholar

10. Standard DIN EN 15305: Non-Destructive Testing – Test Method for Residual Stress Analysis by X-Ray Diffraction, German Version EN 15305: 2008/AC. Beuth, Berlin, 2009Search in Google Scholar

11. Standard JSMS-SD-10-05: Standard Method for X-Ray Stress Measurement. The Society of Materials Science, Japan, 2005, ISBN: 4-901381-27-XSearch in Google Scholar

12. Belassel, M.: Residual Stress Measurement using X-Ray Diffraction – Techniques, Guidelines and Normative Standards. SAE Int. J. Mater. Manuf.5 (2012) 2, pp. 352356, 10.4271/2012-01-0186Search in Google Scholar

13. Noyan, I. C.; Cohen, J. B.: Residual Stress Measurement by Diffraction and Interpretation. Springer, Heidelberg, 198710.1007/978-1-4613-9570-6Search in Google Scholar

14. Manns, T.; Scholtes, B.: Diffraction Residual Stress Analysis in Technical Components – Status and Prospects. Thin Solid Films530 (2012), pp. 5361, 10.1016/j.tsf.2012.03.064Search in Google Scholar

15. Manns, T.; Scholtes, B.: DECcalc – A Program for the Calculation of Diffraction Elastic Constants from Single Crystal Coefficients. Mat. Sci. Forum681 (2011), pp. 417419, 10.4028/www.scientific.net/msf.681.417Search in Google Scholar

16. Stock, C.: Analyse mehrachsiger Eigenspannungsverteilungen im intermediären Werkstoffbereich zwischen Oberfläche und Volumen mittels energiedispersiver Röntgenbeugung. Dissertation, University Berlin, 2003Search in Google Scholar

17. Black, D. R.; Bechthold, R.C.; Placious, R. C.; Kuriama, M.: Three Dimensional Strain Measurements with X-Ray Energy Dispersive Spectroscopy. J. Nondestructive Evaluation5 (1985) 1, pp. 2125, 10.1007/bf00568760Search in Google Scholar

18. Denks, I. A.: Entwicklung einer Methodik zur Erfassung randschichtnaher Eigenspannungsverteilungen σ(z) in polykristallinen Werkstoffen mittels energiedispersiver Diffraktion. university press, Kassel, 2010Search in Google Scholar

19. Manns, T.: Analyse oberflächennaher Eigenspannungszustände mittels komplementärer Beugungsverfahren. Forschungsberichte aus dem Institut für Werkstofftechnik –Metallische Werkstoffe der Universität Kassel, B.Scholtes (ed.), Bd. 11, university press, Kassel, 2010Search in Google Scholar

20. Tostikhin, K.; Scholtes, B.: An approach to solving an ill posed inversed problem of residual stress depth profiling in thin films and compact solid materials. J. Appl. Cryst.49 (2016) 4, pp. 11411147, 10.1107/s1600576716007676Search in Google Scholar

21. Ruppersberg, H., Detemple, I., Krier, J.: Evaluation of strongly non-linear surface-stress fields σxx(z) and σyy(z) from diffraction experiments. Physica Status Solidi (a)116 (1989) 2, pp. 681687, 10.1002/pssa.2211160226Search in Google Scholar

22. Genzel, Chr.; Denks, I. A.; Klaus, M.: Residual Stress Analysis by X-Ray Diffraction Methods. In: Modern Diffraction Methods, E. J.Mittemeijer, U.Welzel (eds.), Wiley-VCH, Weinheim, 2013Search in Google Scholar

23. Welzel, U.; Ligot, J.; Lamparter, P.; Vermeulen, A. C.; Mittemeijer, E. J.: Stress Analysis of polycrystalline thin films and surface regions by X-ray diffraction. J. Appl. Cryst.38 (2005) 1, pp. 129, 10.1107/s0021889804029516Search in Google Scholar

24. Liehr, A.: Beitrag zur randnahen Struktur- und Eigenspannungsanalyse in kristallinen Werkstoffen mit röntgenografischen Verfahren. university press, Kassel, 2017Search in Google Scholar

25. Bechtoldt, C. J.; Placious, R. C.; Boettinger, W. J.; Kuriyama, M.: X-ray residual stress measurements in industrial materials by energy dispersive diffractometry. Adv. X-Ray Anal.25 (1982), pp. 329338Search in Google Scholar

26. Black, D. R.; Bechtoldt, C. J.; Placious, R. C.; Kuriyama, M.: Three dimensional strain measurements with X-ray energy dispersive spectroscopy. J. Nondest. Evaluation5 (1985) 1, pp. 2125, 10.1007/BF00568760Search in Google Scholar

27. Ruppersberg, H.; Detemple, I.; Krier, J.: σxx(z) and σyy(z) stress fields calculated from diffraction experiments performed with synchrotron radiation in the ω- and Ψ-mode techniques. Z. Kristallographie195 (1991), pp. 189203, 10.1524/zkri.1991.195.3-4.189Search in Google Scholar

28. Ruppersberg, H.; Detemple, I.: Evaluation of the complex stress field in a ground steel plate from energy dispersive X-ray diffraction experiments. Mat. Sci. Eng.A161 (1993) 1, pp. 4144, 10.1016/0921-5093(93)90473-rSearch in Google Scholar

29. Ruppersberg, H.: Complicated Average Stress-fields and Attempts at their Evaluation with X-ray Diffraction Methods. Adv. X-Ray Anal.37 (1994), pp. 235244, 10.1007/978-1-4615-2528-8_31Search in Google Scholar

30. Genzel, Ch.; Denks, I. A.; Coelho, R.; Thomas, D.; Mainz, R.; Apel, D.; Klaus, M.: Exploiting the features of energy-dispersive synchrotron diffraction for advanced residual stress and texture analysis. J. Strain Analysis Eng. Design46 (2011), pp. 615625, 10.1177/0309324711403824Search in Google Scholar

31. Genzel, Ch.; Denks, I. A.; Klaus, M.: Residual Stress Analysis by X-Ray Diffraction Methods. In: Modern Diffraction Methods, E. J.Mittemeijer, U.Welzel (eds.), Wiley-VCH, Weinheim, 2013Search in Google Scholar

32. Genzel, Ch.: Residual Stress Analysis by White High Energy X-Rays – Refletcion Mode. In: Neutrons and Synchrotron Radiation in Engineering Materials Science, W.Reimers, A.Pyzalla, A.Schreyer (eds.), Wiley-VCH, Weinheim, 2008Search in Google Scholar

33. Denks, I.; Genzel, Ch.: Enhancement of energy dispersive residual stress analysis by consideration of detector electronic effects. Nucl. Instr. Methods in Phys. ResearchB262 (2007) 1, pp. 8794, 10.1016/j.nimb.2007.05.007Search in Google Scholar

34. Breidenstein, B.; Denkena, B.; Prasanthan, V.: Energy resolved residual stress determination. Proc. Euro Hybrid Materials and Structures2016, 20–21.04.16, Kaiserslautern; DGM (ed.), Berlin, 2016, pp. 211215Search in Google Scholar

35. Liehr, A.; Klaus, M.; Zinn, W.; Genzel, Ch.; Scholtes, B.: Energy-Resolved Residual Stress Analysis under Laboratory Conditions: Concept for a New Type of Diffractometer. Adv. Mat. Research996 (2014), pp. 192196, 10.4028/www.scientific.net/amr.996.192Search in Google Scholar

36. Hemberg, O.; Otendal, M.; Hertz, H. M.: Liquid-metal-jet anode electron-impact source. Appl. Phsy. Letters83 (2003) 7, pp. 14831485, 10.1063/1.1602157Search in Google Scholar

37. Spieß, L.; Teichert, G.; Behnken, H.; Schwarzer, R.; Genzel, Chr.: Moderne Röntgenbeugung. 3. Aufl., Springer, Heidelberg, 2017Search in Google Scholar

38. Sokolov, A.; Pchelintsev, A.; Loupilov, A.; Gostilo, V.: Electrically Cooled SiLi Detectors for Application in X-Ray Equipment. Microchim Acta155 (2006) 1–2, pp. 285288, 10.1007/s00604-006-0557-2Search in Google Scholar

39. Erbacher, T.: Eigenspannungen, Festigkeiten und Schädigungsverhalten von Aluminiumoxid unter thermischer und friktiver Randschichtbeanspruchung. Dissertation, University Karlsruhe, 2006Search in Google Scholar

40. Erbacher, T.; Wanner, A.; Beck, T.; Vöhringer, O.: X-Ray Diffraction at Constant Penetration Depth – A Viable Approach for Characterizing Steep Residual Stress Gradients. J. Appl. Cryst.41 (2008) 2, pp. 377385, 10.1107/s0021889807066836Search in Google Scholar

Published Online: 2017-04-17
Published in Print: 2017-04-19

© 2017, Carl Hanser Verlag, München

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110316/html
Scroll to top button