Abstract
The kinetics and product distribution during the cracking of heptane in the presence of steam were investigated. The experiments were performed in a flow reactor under atmospheric pressure in a temperature range of 680–760°C with a mass ratio of steam to heptane of 3: 1. The overall decomposition of heptane is represented by a first-order reaction with activation energy of 249.1 kJ mol−1 and a frequency factor of 3.13 × 1013 s−1. The reaction products were analysed using gas chromatography, the main product being ethylene. The molecular reaction scheme, which consists of a primary reaction and 24 secondary reactions between primary products, was used for modelling the experimental product yields. The yields of ethylene and hydrogen were in good agreement; however the experimental yields of propylene were higher than the predicted yields.
[1] Albright, L. F., & Tsai, T. C. (1983). Importance of surface reactions units. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 233–254). New York, NY, USA: Academic Press. Suche in Google Scholar
[2] Allara, D. L., & Shaw, R. (1980). A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. Journal of Physical and Chemical Reference Data, 9, 523–560. DOI: 10.1063/1.555623. http://dx.doi.org/10.1063/1.55562310.1063/1.555623Suche in Google Scholar
[3] Appleby, W. G., Aver, W. H., & Meerbott, W. K. (1947). Kinetics and mechanism of the thermal decomposition of n-heptane. Journal of the American Chemical Society, 69, 2279–2285. DOI: 10.1021/ja01202a012. http://dx.doi.org/10.1021/ja01202a01210.1021/ja01202a012Suche in Google Scholar
[4] Aribike, D. S., & Susu, A. A. (1988a). Kinetics and mechanism of the thermal cracking of n-heptane. Thermochimica Acta, 127, 247–258. DOI: 10.1016/0040-6031(88)87501-4. http://dx.doi.org/10.1016/0040-6031(88)87501-410.1016/0040-6031(88)87501-4Suche in Google Scholar
[5] Aribike, D. S., & Susu, A. A. (1988b). Mechanistic modeling of the pyrolysis of n-heptane. Thermochimica Acta, 127, 259–273. DOI: 10.1016/0040-6031(88)87502-6. http://dx.doi.org/10.1016/0040-6031(88)87502-610.1016/0040-6031(88)87502-6Suche in Google Scholar
[6] Bajus, M., & Vesely, V. (1974). CS Patent No. 175812. Prague, Czechoslovakia: Czechoslovak Patent and Trademark Office. Suche in Google Scholar
[7] Bajus, M., & Vesely, V. (1976). Hydrocarbon pyrolysis. I. Pyrolysis of individual n-alkanes. Ropa a Uhlie, 18, 126–135. Suche in Google Scholar
[8] Bajus, M., Vesely, V., Leclercq, P. A., & Rijks, J. A. (1979). Steam cracking of hydrocarbons. 1. Pyrolysis of heptane. Industrial & Engineering Chemistry Product Research and Development, 18, 30–37. DOI: 10.1021/i360069a007. http://dx.doi.org/10.1021/i360069a00710.1021/i360069a007Suche in Google Scholar
[9] Bajus, M. (1989). Sulfur compounds in hydrocarbon pyrolysis. Sulfur reports, 9, 25–71. DOI: 10.1080/01961778908047982. http://dx.doi.org/10.1080/0196177890804798210.1080/01961778908047982Suche in Google Scholar
[10] Berreni, M., & Wang, M. H. (2011). Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing. Computers & Chemical Engineering, 35, 2876–2885. DOI: 10.1016/j.compchemeng.2011.05.010. http://dx.doi.org/10.1016/j.compchemeng.2011.05.01010.1016/j.compchemeng.2011.05.010Suche in Google Scholar
[11] Bounaceur, R., Warth, V., Marquaire, P. M., Scacchi, G., Dominé, F., Dessort, D., & Brevart, O. (2002). Modeling of hydrocarbons pyrolysis at low temperature. Automatic generation of free radicals mechanisms. Journal of Analytical and Applied Pyrolysis, 64, 103–122. DOI: 10.1016/s0165-2370(01)00173-5. http://dx.doi.org/10.1016/S0165-2370(01)00173-510.1016/S0165-2370(01)00173-5Suche in Google Scholar
[12] Chakraborty, J. P., & Kunzru, D. (2009). High pressure pyrolysis of n-heptane. Journal of Analytical and Applied Pyrolysis, 86, 44–52. DOI: 10.1016/j.jaap.2009.04.001. http://dx.doi.org/10.1016/j.jaap.2009.04.00110.1016/j.jaap.2009.04.001Suche in Google Scholar
[13] Chakraborty, J. P., & Kunzru, D. (2012). High-pressure pyrolysis of n-heptane: Effect of initiators. Journal of Analytical and Applied Pyrolysis, 95, 48–55. DOI:10.1016/j.jaap.2012. 01.004. http://dx.doi.org/10.1016/j.jaap.2012.01.00410.1016/j.jaap.2012.01.004Suche in Google Scholar
[14] Dente, M. E., & Ranzi, E. M. (1983). Mathematical modeling of hydrocarbon pyrolysis reactions. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 133–175). New York, NY, USA: Academic Press. Suche in Google Scholar
[15] Ding, J. X., Zhang, L., & Han, K. L. (2011). Thermal rate constants of the pyrolysis of n-heptane. Combustion and Flame, 158, 2314–2324. DOI: 10.1016/j.combustflame.2011.04.015. http://dx.doi.org/10.1016/j.combustflame.2011.04.01510.1016/j.combustflame.2011.04.015Suche in Google Scholar
[16] Ding, J. X., Zhang, L., Zhang, Y., & Han, K. (2013). A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. The Journal of Physical Chemistry A, 117, 3266–3278. DOI: 10.1021/jp311498u. http://dx.doi.org/10.1021/jp311498u10.1021/jp311498uSuche in Google Scholar PubMed
[17] Fabuss, B. M., Smith, J. O., & Satterfield, C. N. (1964). Thermal cracking of pure saturated hydrocarbons. In J. J. McKetta, Jr. (Ed.), Advances in petroleum chemistry and refining (Vol. 9, pp. 156–201). New York, NY, USA: Wiley. Suche in Google Scholar
[18] Hájeková, E., & Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. Journal of Analytical and Applied Pyrolysis, 74, 270–281. DOI: 10.1016/j.jaap.2004.11.016. http://dx.doi.org/10.1016/j.jaap.2004.11.01610.1016/j.jaap.2004.11.016Suche in Google Scholar
[19] Hájeková, E., Mlynková, B., Bajus, M., & Špodová, L. (2007). Copyrolysis of naphtha with polyalkene cracking products; the influence of polyalkene mixtures composition on product distribution. Journal of Analytical and Applied Pyrolysis, 79, 196–204. DOI: 10.1016/j.jaap.2006.12.022. http://dx.doi.org/10.1016/j.jaap.2006.12.02210.1016/j.jaap.2006.12.022Suche in Google Scholar
[20] Hougen, O. A., & Watson, K. M. (1947). Chemical process principles (Vol. 3). New York, NY, USA: Wiley. Suche in Google Scholar
[21] Jazayeri, S. M., & Karimzadeh, R. (2011). Experimental investigation of initial coke formation over stainless steel, chromium, and iron in thermal cracking of ethane with hydrogen sulfide as an additive. Energy & Fuels, 25, 4235–4247. DOI: 10.1021/ef2005173. http://dx.doi.org/10.1021/ef200517310.1021/ef2005173Suche in Google Scholar
[22] Kapur, S. (2005). ABB Lummus Global SRT® cracking technology for the production of ethylene. In R. A. Meyers (Ed.), Handbook of petrochemicals production processes (Chapter 6.1). New York, NY, USA: Mc Graw-Hill. Suche in Google Scholar
[23] Karaba, A., Zamostny, P., Lederer, J., & Belohlav, Z. (2013). Generalized model of hydrocarbons pyrolysis using automated reactions network generation. Industrial & Engineering Chemistry Research, 52, 15407–15416. DOI: 10.1021/ie4006657. http://dx.doi.org/10.1021/ie400665710.1021/ie4006657Suche in Google Scholar
[24] Katta, V. R., Aggarwal, S. K., & Roquemore, W. M. (2012). Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional CFD code. Fuel, 93, 339–350. DOI: 10.1016/j.fuel.2011.10.035. http://dx.doi.org/10.1016/j.fuel.2011.10.03510.1016/j.fuel.2011.10.035Suche in Google Scholar
[25] Kopinke, F. D., Zimmermann, G., & Ondruschka, B. (1987). Tendencies of aromatization in steam cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 26, 2393–2397. DOI: 10.1021/ie00071a037. http://dx.doi.org/10.1021/ie00071a03710.1021/ie00071a037Suche in Google Scholar
[26] Kossiakoff, A., & Rice, F. O. (1943). Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals. Journal of the American Chemical Society, 65, 590–595. DOI: 10.1021/ja01244a028. http://dx.doi.org/10.1021/ja01244a02810.1021/ja01244a028Suche in Google Scholar
[27] Murata, M., Saito, S., Amano, A., & Maeda, S. (1973). Prediction of initial product distributions from pyrolysis of normal paraffinic hydrocarbons. Journal of Chemical Engineering of Japan, 6, 252–258. DOI: 10.1252/jcej.6.252. http://dx.doi.org/10.1252/jcej.6.25210.1252/jcej.6.252Suche in Google Scholar
[28] Pant, K. K., & Kunzru, D. (1996). Pyrolysis of n-heptane: kinetics and modeling. Journal of Analytical and Applied Pyrolysis, 36, 103–120. DOI: 10.1016/0165-2370(95)00925-6. http://dx.doi.org/10.1016/0165-2370(95)00925-610.1016/0165-2370(95)00925-6Suche in Google Scholar
[29] Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1988). The properties of gases and liquids (4th ed.). New York, NY, USA: McGraw-Hill. Suche in Google Scholar
[30] Reyniers, M. F. S. G., & Froment, G. F. (1995). Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 34, 773–785. DOI: 10.1021/ie00042a009. http://dx.doi.org/10.1021/ie00042a00910.1021/ie00042a009Suche in Google Scholar
[31] Rice, F. O., & Herzfeld, K. F. (1934). The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions. Journal of the American Chemical Society, 56, 284–289. DOI: 10.1021/ja01317a006. http://dx.doi.org/10.1021/ja01317a00610.1021/ja01317a006Suche in Google Scholar
[32] Savage, P. E. (2000). Mechanisms and kinetics models for hydrocarbon pyrolysis. Journal of Analytical and Applied Pyrolysis, 54, 109–126. DOI: 10.1016/s0165-2370(99)00084-4. http://dx.doi.org/10.1016/S0165-2370(99)00084-410.1016/S0165-2370(99)00084-4Suche in Google Scholar
[33] Sundaram, K. M., & Froment, G. F. (1978). Modeling of thermal cracking kinetics. 3. Radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures. Industrial & Engineering Chemistry Fundamentals, 17, 174–182. DOI: 10.1021/i160067a006. http://dx.doi.org/10.1021/i160067a00610.1021/i160067a006Suche in Google Scholar
[34] Yuan, T., Zhang, L. D., Zhou, Z. Y., Xie, M. F., Ye, L. L., & Qi, F. (2011). Pyrolysis of n-heptane: Experimental and theoretical study. The Journal of Physical Chemistry A, 115, 1593–1601. DOI: 10.1021/jp109640z. http://dx.doi.org/10.1021/jp109640z10.1021/jp109640zSuche in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Founding father of Slovak chemical engineering Elemír Kossaczký (Ľubietová, 13.6.1924 — Bratislava, 5.5.2014)
- Adsorption, chemisorption, and catalysis
- Production of fructosyltransferase in mechanically stirred and air-lift bioreactors
- Effect of temperature on the equilibrium and kinetics of galactose, glucose, and lactose adsorption on a cation exchanger
- Intensive 2-phenylethanol production in a hybrid system combined of a stirred tank reactor and an immersed extraction membrane module
- Design consideration of dimethyl succinate production process
- Kinetics and modelling of heptane steam-cracking
- Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins
- Partial oxidation of high-boiling hydrocarbon mixtures in the pilot unit
- Underground coal gasification: rates of post processing gas transport
- Modelling of catalytic hydrocracking and fractionation of refinery vacuum residue
- Kinetics of thermal degradation of wood biomass
- Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide
- Ethanol extracts of Hemidesmus indicus leaves as eco-friendly inhibitor of mild steel corrosion in H2SO4 medium
- Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts
- Measurement of critical heat flux conditions under vacuum
- Intensification of heat transfer in a liquid film evaporator
Artikel in diesem Heft
- Founding father of Slovak chemical engineering Elemír Kossaczký (Ľubietová, 13.6.1924 — Bratislava, 5.5.2014)
- Adsorption, chemisorption, and catalysis
- Production of fructosyltransferase in mechanically stirred and air-lift bioreactors
- Effect of temperature on the equilibrium and kinetics of galactose, glucose, and lactose adsorption on a cation exchanger
- Intensive 2-phenylethanol production in a hybrid system combined of a stirred tank reactor and an immersed extraction membrane module
- Design consideration of dimethyl succinate production process
- Kinetics and modelling of heptane steam-cracking
- Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins
- Partial oxidation of high-boiling hydrocarbon mixtures in the pilot unit
- Underground coal gasification: rates of post processing gas transport
- Modelling of catalytic hydrocracking and fractionation of refinery vacuum residue
- Kinetics of thermal degradation of wood biomass
- Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide
- Ethanol extracts of Hemidesmus indicus leaves as eco-friendly inhibitor of mild steel corrosion in H2SO4 medium
- Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts
- Measurement of critical heat flux conditions under vacuum
- Intensification of heat transfer in a liquid film evaporator