Startseite Kinetics and modelling of heptane steam-cracking
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kinetics and modelling of heptane steam-cracking

  • Natália Olahová EMAIL logo , Martin Bajus , Elena Hájeková , Lukáš Šugár und Jozef Markoš
Veröffentlicht/Copyright: 4. November 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The kinetics and product distribution during the cracking of heptane in the presence of steam were investigated. The experiments were performed in a flow reactor under atmospheric pressure in a temperature range of 680–760°C with a mass ratio of steam to heptane of 3: 1. The overall decomposition of heptane is represented by a first-order reaction with activation energy of 249.1 kJ mol−1 and a frequency factor of 3.13 × 1013 s−1. The reaction products were analysed using gas chromatography, the main product being ethylene. The molecular reaction scheme, which consists of a primary reaction and 24 secondary reactions between primary products, was used for modelling the experimental product yields. The yields of ethylene and hydrogen were in good agreement; however the experimental yields of propylene were higher than the predicted yields.

[1] Albright, L. F., & Tsai, T. C. (1983). Importance of surface reactions units. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 233–254). New York, NY, USA: Academic Press. Suche in Google Scholar

[2] Allara, D. L., & Shaw, R. (1980). A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. Journal of Physical and Chemical Reference Data, 9, 523–560. DOI: 10.1063/1.555623. http://dx.doi.org/10.1063/1.55562310.1063/1.555623Suche in Google Scholar

[3] Appleby, W. G., Aver, W. H., & Meerbott, W. K. (1947). Kinetics and mechanism of the thermal decomposition of n-heptane. Journal of the American Chemical Society, 69, 2279–2285. DOI: 10.1021/ja01202a012. http://dx.doi.org/10.1021/ja01202a01210.1021/ja01202a012Suche in Google Scholar

[4] Aribike, D. S., & Susu, A. A. (1988a). Kinetics and mechanism of the thermal cracking of n-heptane. Thermochimica Acta, 127, 247–258. DOI: 10.1016/0040-6031(88)87501-4. http://dx.doi.org/10.1016/0040-6031(88)87501-410.1016/0040-6031(88)87501-4Suche in Google Scholar

[5] Aribike, D. S., & Susu, A. A. (1988b). Mechanistic modeling of the pyrolysis of n-heptane. Thermochimica Acta, 127, 259–273. DOI: 10.1016/0040-6031(88)87502-6. http://dx.doi.org/10.1016/0040-6031(88)87502-610.1016/0040-6031(88)87502-6Suche in Google Scholar

[6] Bajus, M., & Vesely, V. (1974). CS Patent No. 175812. Prague, Czechoslovakia: Czechoslovak Patent and Trademark Office. Suche in Google Scholar

[7] Bajus, M., & Vesely, V. (1976). Hydrocarbon pyrolysis. I. Pyrolysis of individual n-alkanes. Ropa a Uhlie, 18, 126–135. Suche in Google Scholar

[8] Bajus, M., Vesely, V., Leclercq, P. A., & Rijks, J. A. (1979). Steam cracking of hydrocarbons. 1. Pyrolysis of heptane. Industrial & Engineering Chemistry Product Research and Development, 18, 30–37. DOI: 10.1021/i360069a007. http://dx.doi.org/10.1021/i360069a00710.1021/i360069a007Suche in Google Scholar

[9] Bajus, M. (1989). Sulfur compounds in hydrocarbon pyrolysis. Sulfur reports, 9, 25–71. DOI: 10.1080/01961778908047982. http://dx.doi.org/10.1080/0196177890804798210.1080/01961778908047982Suche in Google Scholar

[10] Berreni, M., & Wang, M. H. (2011). Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing. Computers & Chemical Engineering, 35, 2876–2885. DOI: 10.1016/j.compchemeng.2011.05.010. http://dx.doi.org/10.1016/j.compchemeng.2011.05.01010.1016/j.compchemeng.2011.05.010Suche in Google Scholar

[11] Bounaceur, R., Warth, V., Marquaire, P. M., Scacchi, G., Dominé, F., Dessort, D., & Brevart, O. (2002). Modeling of hydrocarbons pyrolysis at low temperature. Automatic generation of free radicals mechanisms. Journal of Analytical and Applied Pyrolysis, 64, 103–122. DOI: 10.1016/s0165-2370(01)00173-5. http://dx.doi.org/10.1016/S0165-2370(01)00173-510.1016/S0165-2370(01)00173-5Suche in Google Scholar

[12] Chakraborty, J. P., & Kunzru, D. (2009). High pressure pyrolysis of n-heptane. Journal of Analytical and Applied Pyrolysis, 86, 44–52. DOI: 10.1016/j.jaap.2009.04.001. http://dx.doi.org/10.1016/j.jaap.2009.04.00110.1016/j.jaap.2009.04.001Suche in Google Scholar

[13] Chakraborty, J. P., & Kunzru, D. (2012). High-pressure pyrolysis of n-heptane: Effect of initiators. Journal of Analytical and Applied Pyrolysis, 95, 48–55. DOI:10.1016/j.jaap.2012. 01.004. http://dx.doi.org/10.1016/j.jaap.2012.01.00410.1016/j.jaap.2012.01.004Suche in Google Scholar

[14] Dente, M. E., & Ranzi, E. M. (1983). Mathematical modeling of hydrocarbon pyrolysis reactions. In L. F. Albright, B. L. Crynes, & W. H. Corcoran (Eds.), Pyrolysis: Theory and industrial practice (pp. 133–175). New York, NY, USA: Academic Press. Suche in Google Scholar

[15] Ding, J. X., Zhang, L., & Han, K. L. (2011). Thermal rate constants of the pyrolysis of n-heptane. Combustion and Flame, 158, 2314–2324. DOI: 10.1016/j.combustflame.2011.04.015. http://dx.doi.org/10.1016/j.combustflame.2011.04.01510.1016/j.combustflame.2011.04.015Suche in Google Scholar

[16] Ding, J. X., Zhang, L., Zhang, Y., & Han, K. (2013). A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. The Journal of Physical Chemistry A, 117, 3266–3278. DOI: 10.1021/jp311498u. http://dx.doi.org/10.1021/jp311498u10.1021/jp311498uSuche in Google Scholar PubMed

[17] Fabuss, B. M., Smith, J. O., & Satterfield, C. N. (1964). Thermal cracking of pure saturated hydrocarbons. In J. J. McKetta, Jr. (Ed.), Advances in petroleum chemistry and refining (Vol. 9, pp. 156–201). New York, NY, USA: Wiley. Suche in Google Scholar

[18] Hájeková, E., & Bajus, M. (2005). Recycling of low-density polyethylene and polypropylene via copyrolysis of polyalkene oil/waxes with naphtha: product distribution and coke formation. Journal of Analytical and Applied Pyrolysis, 74, 270–281. DOI: 10.1016/j.jaap.2004.11.016. http://dx.doi.org/10.1016/j.jaap.2004.11.01610.1016/j.jaap.2004.11.016Suche in Google Scholar

[19] Hájeková, E., Mlynková, B., Bajus, M., & Špodová, L. (2007). Copyrolysis of naphtha with polyalkene cracking products; the influence of polyalkene mixtures composition on product distribution. Journal of Analytical and Applied Pyrolysis, 79, 196–204. DOI: 10.1016/j.jaap.2006.12.022. http://dx.doi.org/10.1016/j.jaap.2006.12.02210.1016/j.jaap.2006.12.022Suche in Google Scholar

[20] Hougen, O. A., & Watson, K. M. (1947). Chemical process principles (Vol. 3). New York, NY, USA: Wiley. Suche in Google Scholar

[21] Jazayeri, S. M., & Karimzadeh, R. (2011). Experimental investigation of initial coke formation over stainless steel, chromium, and iron in thermal cracking of ethane with hydrogen sulfide as an additive. Energy & Fuels, 25, 4235–4247. DOI: 10.1021/ef2005173. http://dx.doi.org/10.1021/ef200517310.1021/ef2005173Suche in Google Scholar

[22] Kapur, S. (2005). ABB Lummus Global SRT® cracking technology for the production of ethylene. In R. A. Meyers (Ed.), Handbook of petrochemicals production processes (Chapter 6.1). New York, NY, USA: Mc Graw-Hill. Suche in Google Scholar

[23] Karaba, A., Zamostny, P., Lederer, J., & Belohlav, Z. (2013). Generalized model of hydrocarbons pyrolysis using automated reactions network generation. Industrial & Engineering Chemistry Research, 52, 15407–15416. DOI: 10.1021/ie4006657. http://dx.doi.org/10.1021/ie400665710.1021/ie4006657Suche in Google Scholar

[24] Katta, V. R., Aggarwal, S. K., & Roquemore, W. M. (2012). Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional CFD code. Fuel, 93, 339–350. DOI: 10.1016/j.fuel.2011.10.035. http://dx.doi.org/10.1016/j.fuel.2011.10.03510.1016/j.fuel.2011.10.035Suche in Google Scholar

[25] Kopinke, F. D., Zimmermann, G., & Ondruschka, B. (1987). Tendencies of aromatization in steam cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 26, 2393–2397. DOI: 10.1021/ie00071a037. http://dx.doi.org/10.1021/ie00071a03710.1021/ie00071a037Suche in Google Scholar

[26] Kossiakoff, A., & Rice, F. O. (1943). Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals. Journal of the American Chemical Society, 65, 590–595. DOI: 10.1021/ja01244a028. http://dx.doi.org/10.1021/ja01244a02810.1021/ja01244a028Suche in Google Scholar

[27] Murata, M., Saito, S., Amano, A., & Maeda, S. (1973). Prediction of initial product distributions from pyrolysis of normal paraffinic hydrocarbons. Journal of Chemical Engineering of Japan, 6, 252–258. DOI: 10.1252/jcej.6.252. http://dx.doi.org/10.1252/jcej.6.25210.1252/jcej.6.252Suche in Google Scholar

[28] Pant, K. K., & Kunzru, D. (1996). Pyrolysis of n-heptane: kinetics and modeling. Journal of Analytical and Applied Pyrolysis, 36, 103–120. DOI: 10.1016/0165-2370(95)00925-6. http://dx.doi.org/10.1016/0165-2370(95)00925-610.1016/0165-2370(95)00925-6Suche in Google Scholar

[29] Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1988). The properties of gases and liquids (4th ed.). New York, NY, USA: McGraw-Hill. Suche in Google Scholar

[30] Reyniers, M. F. S. G., & Froment, G. F. (1995). Influence of metal surface and sulfur addition on coke deposition in the thermal cracking of hydrocarbons. Industrial & Engineering Chemistry Research, 34, 773–785. DOI: 10.1021/ie00042a009. http://dx.doi.org/10.1021/ie00042a00910.1021/ie00042a009Suche in Google Scholar

[31] Rice, F. O., & Herzfeld, K. F. (1934). The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions. Journal of the American Chemical Society, 56, 284–289. DOI: 10.1021/ja01317a006. http://dx.doi.org/10.1021/ja01317a00610.1021/ja01317a006Suche in Google Scholar

[32] Savage, P. E. (2000). Mechanisms and kinetics models for hydrocarbon pyrolysis. Journal of Analytical and Applied Pyrolysis, 54, 109–126. DOI: 10.1016/s0165-2370(99)00084-4. http://dx.doi.org/10.1016/S0165-2370(99)00084-410.1016/S0165-2370(99)00084-4Suche in Google Scholar

[33] Sundaram, K. M., & Froment, G. F. (1978). Modeling of thermal cracking kinetics. 3. Radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures. Industrial & Engineering Chemistry Fundamentals, 17, 174–182. DOI: 10.1021/i160067a006. http://dx.doi.org/10.1021/i160067a00610.1021/i160067a006Suche in Google Scholar

[34] Yuan, T., Zhang, L. D., Zhou, Z. Y., Xie, M. F., Ye, L. L., & Qi, F. (2011). Pyrolysis of n-heptane: Experimental and theoretical study. The Journal of Physical Chemistry A, 115, 1593–1601. DOI: 10.1021/jp109640z. http://dx.doi.org/10.1021/jp109640z10.1021/jp109640zSuche in Google Scholar PubMed

Published Online: 2014-11-4
Published in Print: 2014-12-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0518-2/html
Button zum nach oben scrollen