Abstract
Naturally occurring organic acids are reported to be highly efficient promoters of the Beckmann rearrangement. Citric, oxalic, tartaric, malic, succinic, malonic, and fumaric acids efficiently promote the Beckmann rearrangement under solvent-free conditions and thermal and microwave irradiation. Tartaric acid was found to be the best promoter of the Beckmann rearrangement under conventional conditions as well as under microwave irradiation. Compared with conventional heating, microwave irradiation provides higher reaction rate and slightly higher yields.
[1] Abele, E., & Lukevics, E. (2000). Recent advances in the synthesis of heterocycles from oximes. Heterocycles, 53, 2285–2336. DOI: 10.3987/rev-00-536. http://dx.doi.org/10.3987/REV-00-53610.3987/REV-00-536Search in Google Scholar
[2] Anastas, P. T., & Williamson, T. C. (Eds.) (1998). Green chemistry: Frontiers in benign chemical syntheses and processes. New York, NY, USA: Oxford University Press. Search in Google Scholar
[3] Anilkumar, M., & Hoelderich, W. F. (2012). Gas phase Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam over mesoporous, microporous and amorphous Nb2O5/silica catalysts: A comparative study. Catalysis Today, 198, 289–299. DOI: 10.1016/j.cattod.2012.01.043. http://dx.doi.org/10.1016/j.cattod.2012.01.04310.1016/j.cattod.2012.01.043Search in Google Scholar
[4] Chandrasekhar, S., & Gopalaiah, K. (2003). Ketones to amides via a formal Beckmann rearrangement in ‘one pot’: a solventfree reaction promoted by anhydrous oxalic acid. Possible analogy with the Schmidt reaction. Tetrahedron Letters, 44, 7437–7439. DOI: 10.1016/j.tetlet.2003.08.038. http://dx.doi.org/10.1016/j.tetlet.2003.08.03810.1016/j.tetlet.2003.08.038Search in Google Scholar
[5] DeSimone, J. M. (2002). Practical approaches to green solvents. Science, 297, 799–803. DOI: 10.1126/science.1069622. http://dx.doi.org/10.1126/science.106962210.1126/science.1069622Search in Google Scholar PubMed
[6] de Vasconcelos, A., Oliveira, P. S., Ritter, M., Freitag, R. A., Romano, R. L., Quina, F. H., Pizzuti, L., Pereira, C. M. P., Stefanello, F. M., & Barschak, A. G. (2012). Antioxidant capacity and environmentally friendly synthesis of dihydropyrimidin-(2H)-ones promoted by naturally occurring organic acids. Journal of Biochemical and Molecular Toxicology, 26, 155–161. DOI: 10.1002/jbt.20424. http://dx.doi.org/10.1002/jbt.2042410.1002/jbt.20424Search in Google Scholar PubMed
[7] Forni, L., Fornasari, G., Giordano, G., Lucarelli, C., Katovic, A., Trifirò, F., Perri, C., & Nagy, J. B. (2004). Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Physical Chemistry Chemical Physics, 6, 1842–1847. DOI: 10.1039/b316810g. http://dx.doi.org/10.1039/b316810g10.1039/B316810GSearch in Google Scholar
[8] Kim, J., Park, W., & Ryoo, R. (2011). Surfactant-directed zeolite nanosheets: A high-performance catalyst for gas-phase Beckmann rearrangement. ACS Catalysis, 1, 337–341. DOI: 10.1021/cs100160g. http://dx.doi.org/10.1021/cs100160g10.1021/cs100160gSearch in Google Scholar
[9] Li, D., Shi, F., Guo, S., & Deng, Y. (2005). Highly efficient Beckmann rearrangement and dehydration of oximes. Tetrahedron Letters, 46, 671–674. DOI: 10.1016/j.tetlet.2004.11.116. http://dx.doi.org/10.1016/j.tetlet.2004.11.11610.1016/j.tetlet.2004.11.116Search in Google Scholar
[10] Matlack, A. S. (2001). Introduction to green chemistry. New York, NY, USA: Marcel Dekker. Search in Google Scholar
[11] Mitsudome, T., Matsuno, T., Sueoka, S., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2012). Titanium cation-exchanged montmorillonite as an active heterogeneous catalyst for the Beckmann rearrangement under mild reaction conditions. Tetrahedron Letters, 53, 5211–5214. DOI: 10.1016/j.tetlet.2012.07.032. http://dx.doi.org/10.1016/j.tetlet.2012.07.03210.1016/j.tetlet.2012.07.032Search in Google Scholar
[12] Narasaka, K., Kusama, H., Yamashita, Y., & Sato, H. (1993). Beckmann rearrangement catalyzed by the combined use of tetrabutylammonium perrhenate(VII) and trifluoromethanesulfonic acid. Chemistry Letters, 22, 489–492. DOI: 10.1246/cl.1993.489. http://dx.doi.org/10.1246/cl.1993.48910.1246/cl.1993.489Search in Google Scholar
[13] Nubbemeyer, U. (2001). Synthesis of medium-sized ring lactams. Topics in Current Chemistry, 216, 125–196. DOI: 10.1007/3-540-44726-1 4. http://dx.doi.org/10.1007/3-540-44726-1_410.1007/3-540-44726-1Search in Google Scholar
[14] Opanasenko, M., Shamzhy, M., Lamač, M., & Čejka, J. (2013). The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today, 204, 94–100. DOI: 10.1016/j.cattod.2012.09.008. http://dx.doi.org/10.1016/j.cattod.2012.09.00810.1016/j.cattod.2012.09.008Search in Google Scholar
[15] Poliakoff, M., & Anastas, P. (2001). A principled stance. Nature, 413, 257. DOI: 10.1038/35095133. http://dx.doi.org/10.1038/3509513310.1038/35095133Search in Google Scholar PubMed
[16] Shamzhy, M. V., Shvets, O. V., Opanasenko, M. V., Kurfiřtová, L., Kubička, D., & Čejka, J. (2013). Extra-large-pore zeolites with UTL topology: Control of the catalytic activity by variation in the nature of the active sites. ChemCatChem, 5, 1891–1898. DOI: 10.1002/cctc.201200925. http://dx.doi.org/10.1002/cctc.20120092510.1002/cctc.201200925Search in Google Scholar
[17] Shiju, N. R., Williams, H. M., & Brown, D. R. (2009). Cs exchanged phosphotungstic acid as an efficient catalyst for liquid-phase Beckmann rearrangement of oximes. Applied Catalysis B: Environmental, 90, 451–457. DOI: 10.1016/j.apcatb.2009.04.016. http://dx.doi.org/10.1016/j.apcatb.2009.04.01610.1016/j.apcatb.2009.04.016Search in Google Scholar
[18] Suresh, Saini, A., Kumar, D., & Sandhu, J. S. (2009). Multicomponent eco-friendly synthesis of 3,4-dihydropyrimidine-2-(1H)-ones using an organocatalyst lactic acid. Green Chemistry Letters and Reviews, 2, 29–33. DOI: 10.1080/17518250902973833. http://dx.doi.org/10.1080/1751825090297383310.1080/17518250902973833Search in Google Scholar
[19] Thopate, S. R., Kote, S. R., Rohokale, S. V., & Thorat, N. M. (2011). Citric acid catalysed Beckmann rearrangement, under solvent free conditions. Journal of Chemical Research, 35, 124–125. DOI: 10.3184/174751911x557296. http://dx.doi.org/10.3184/174751911X55729610.3184/174751911X557296Search in Google Scholar
[20] Wang, B., Gu, Y., Luo, C., Yang, T., Yang, L., & Suo, J. (2004). Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Letters, 45, 3369–3372. DOI: 10.1016/j.tetlet.2004.03.017. http://dx.doi.org/10.1016/j.tetlet.2004.03.01710.1016/j.tetlet.2004.03.017Search in Google Scholar
[21] Xiao, L. F, Xia, C. G., & Chen, J. (2007). p-Toluenesulfonic acid mediated zinc chloride: highly effective catalyst for the Beckmann rearrangement. Tetrahedron Letters, 48, 7218–7221. DOI: 10.1016/j.tetlet.2007.07.171. http://dx.doi.org/10.1016/j.tetlet.2007.07.17110.1016/j.tetlet.2007.07.171Search in Google Scholar
[22] You, K., Mao, L., Yin, D., Liu, P., & Luo, H. (2008). Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam catalyzed by sulfonic acid resin in DMSO. Catalysis Communications, 9, 1521–1526. DOI: 10.1016/j.catcom.2008.01.011. http://dx.doi.org/10.1016/j.catcom.2008.01.01110.1016/j.catcom.2008.01.011Search in Google Scholar
[23] Zhao, W., Salame, P., Launay, F., Gédéon, A., & Hao, Z. (2008). Sulfonic acid functionalised SBA-15 as catalysts for Beckmann rearrangement and esterification reaction. Journal of Porous Materials, 15, 139–143. DOI: 10.1007/s10934-007-9115-5. http://dx.doi.org/10.1007/s10934-007-9115-510.1007/s10934-007-9115-5Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Articles in the same Issue
- Determination of mercury species using thermal desorption analysis in AAS
- Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
- Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
- Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
- Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
- Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
- Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
- Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
- Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
- Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
- Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
- I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
- Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
- Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
- Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
- Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
- Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions