Home Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
Article
Licensed
Unlicensed Requires Authentication

Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area

  • Edyta Kułdo EMAIL logo , Grażyna Jarzyńska , Magdalena Gucia and Jerzy Falandysz
Published/Copyright: December 20, 2013
Become an author with De Gruyter Brill

Abstract

Concentrations and interrelationships of twenty elements were studied in parasol mushroom and in the top layer of soil (0–10 cm) from the area of Kiwity (Poland). K, P, Mg, Ca, and Zn were found to be the most abundant elements in the mushroom. Higher concentrations of Fe, Mn, Na, Ni occurred in stipes then in caps, while Cd, Cr, Cu, Hg, Rb dominated in caps. Ag, Al, and Ba concentrations in caps and stipes were similar. Parasol mushroom is efficient in up-take and separation of Ag, Cd, Cu, Hg, K (in caps, the bioconcentration factor is BCF ≥ 100), Na, P, Rb (50 < BCF < 100), and Mg, Zn (BCF > 10) in its fruiting bodies, while Al, Ba, Ca, Co, Cr, Fe, Mn, Sr, and Pb are eliminated (BCF < 1). Parasol mushroom from rural forest area in the north-eastern region of Poland is of hygienic concern for human health because of toxic mercury and cadmium content in the edible caps, which are also rich in essential Cu, Fe, and their K, Mn, and Zn content is also high.

[1] Alonso, J., García, M. A., Pérez-López, M., & Melgar, M. J. (2003). The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology, 44, 180–188. DOI: 10.1007/s00244-002-2051-0. http://dx.doi.org/10.1007/s00244-002-2051-010.1007/s00244-002-2051-0Search in Google Scholar PubMed

[2] Baptista, P., Ferreira, S., Soares, E., Coelho, V., & de Lourdes Bartos, M. (2009). Tolerance and stress response of Macrolepiota procera to nickel. Journal of Agricultural and Food Chemistry, 57, 7145–7152. DOI: 10.1021/jf902075b. http://dx.doi.org/10.1021/jf902075b10.1021/jf902075bSearch in Google Scholar PubMed

[3] Borovička, J., Kotrba, P., Gryndler, M., Mihaljevič, M., Řanda, Z., Rohovec, J., Cajthaml, T., Stijve, T., & Dunn, C. E. (2010). Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Science of the Total Environment, 408, 2733–2744. DOI: 10.1016/j.scitotenv.2010.02.031. http://dx.doi.org/10.1016/j.scitotenv.2010.02.03110.1016/j.scitotenv.2010.02.031Search in Google Scholar PubMed

[4] Brzostowski, A., Bielawski, L., Orlikowska, A., Plichta, S., & Falandysz, J. (2009). Instrumental analysis of metals profile in poison pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chemia Analityczna (Warsaw), 54, 1297–1308. Search in Google Scholar

[5] Brzostowski, A., Falandysz, J., Jarzyńska, G., & Zhang, D. (2011a). Bioconcentration potential of metallic elements by poison pax (Paxillus involutus) mushroom. Journal of Environmental Science and Health, Part A, 46, 378–393. DOI: 10.1080/10934529.2011.542387. http://dx.doi.org/10.1080/10934529.2011.54238710.1080/10934529.2011.542387Search in Google Scholar PubMed

[6] Brzostowski, A., Jarzyńska, G., Kojta, A. K., Wydmánska, D., & Falandysz, J. (2011b). Variations in metal levels accumulated in poison pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health, Part A, 46, 581–588. DOI: 10.1080/10934529.2011.562827. http://dx.doi.org/10.1080/10934529.2011.56282710.1080/10934529.2011.562827Search in Google Scholar PubMed

[7] Carvalho, M. L., Pimentel, A. C., & Fernandes, B. (2005). Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Analytical Science, 21, 747–750. DOI: 10.2116/analsci.21.747. http://dx.doi.org/10.2116/analsci.21.74710.2116/analsci.21.747Search in Google Scholar PubMed

[8] Cenci, R. M., Sena, F., & Cocchi, L. (2010). Elementi chimici nei funghi superiori. Rome, Italy: Scientifico. (in Italian) Search in Google Scholar

[9] Chang, S. T. (1990). Composition of foods. Mushrooms as food. Food Laboratory News, 21, 7–8. Search in Google Scholar

[10] Chang, S. T. (2006). The world mushroom industry: Trends and technological development. International Journal of Medicinal Mushrooms, 8, 297–314. DOI: 10.1615/intjmedmushr.v8.i4.10. http://dx.doi.org/10.1615/IntJMedMushr.v8.i4.1010.1615/IntJMedMushr.v8.i4.10Search in Google Scholar

[11] Chudzyński, K., & Falandysz, J. (2008). Multivariate analysis of elements content of Larch Bolete (Suillus grevillei) mushroom. Chemosphere, 78, 1230–1239. DOI: 10.1016/j. chemosphere.2008.07.055. http://dx.doi.org/10.1016/j.chemosphere.2008.07.05510.1016/j.chemosphere.2008.07.055Search in Google Scholar PubMed

[12] Chudzyński, K., Bielawski, L., & Falandysz, J. (2009). Mercury bio-concentration potential of larch bolete, Suillus grevillei, mushroom. Bulletin of Environmental Contamination and Toxicology, 83, 275–279. DOI: 10.1007/s00128-009-9723-7. http://dx.doi.org/10.1007/s00128-009-9723-710.1007/s00128-009-9723-7Search in Google Scholar PubMed

[13] Chudzyński, K., Jarzyńska, G., Stefánska, A., & Falandysz, J. (2011). Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chemistry, 125, 986–990. DOI: 10.1016/j.foodchem.2010.09.102 http://dx.doi.org/10.1016/j.foodchem.2010.09.10210.1016/j.foodchem.2010.09.102Search in Google Scholar

[14] Drbal, K., Kalač, P., Šeflová, A., & Šefl, J. (1975). Obsah mědi v některych druzích jedlych hub. Česká Mykologie, 29, 184–186. (in Czech) Search in Google Scholar

[15] Drewnowska, M., Jarzyńska, G., Kojta, A. K., & Falandysz, J. (2012a). Mercury in European blushers, Amanita rubescens, mushrooms and topsoils. Bioconcentration potential and intake assessment. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 47, 466–474. DOI: 10.1080/03601234.2012.663609. http://dx.doi.org/10.1080/03601234.2012.66360910.1080/03601234.2012.663609Search in Google Scholar

[16] Drewnowska, M., Săpór, A., Jarzyńska, G., Nnorom, I. C., Sajwan, K. S., & Falandysz, J. (2012b). Mercury in Russula mushrooms: Bioconcentration by yellow-ocher brittle gills Russula ochroleuca. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47, 1577–1591. DOI: 10.1080/10934529.2012.680420. http://dx.doi.org/10.1080/10934529.2012.68042010.1080/10934529.2012.680420Search in Google Scholar

[17] Dybczyński, R. (1996). Preparation and certification of the Polish reference material “oriental tobacco leaves” (CTA-OTL-1) for inorganic trace analysis. Warszawa, Poland: Institute of Nuclear Chemistry and Technology. Search in Google Scholar

[18] Falandysz, J. (1990). Mercury content of squid Loligo opalescens. Food Chemistry, 38, 171–177. DOI: 10.1016/0308-8146(90)90191-6. http://dx.doi.org/10.1016/0308-8146(90)90191-610.1016/0308-8146(90)90191-6Search in Google Scholar

[19] Falandysz, J. (1991). Manganese, copper, zinc, iron, cadmium, mercury and lead in muscle meat, liver and kidneys of poultry, rabbit and sheep slaughtered in the northern part of Poland, 1987. Food Additives and Contaminants, 8, 70–83. DOI: 10.1080/02652039109373957. 10.1080/02652039109373957Search in Google Scholar

[20] Falandysz, J. (1993). Some toxic and essential trace metals in cattle from the northern part of Poland. The Science of the Total Environment, 135, 177–191. DOI: 10.1016/0048-9697(93)90306-q. http://dx.doi.org/10.1016/0048-9697(93)90306-Q10.1016/0048-9697(93)90306-QSearch in Google Scholar

[21] Falandysz, J. (1994). Some toxic and trace metals in big game hunted in the northern part of Poland in 1987–1991. The Science of the Total Environment, 141, 59–73. DOI: 10.1016/0048-9697(94)90018-3. http://dx.doi.org/10.1016/0048-9697(94)90018-310.1016/0048-9697(94)90018-3Search in Google Scholar

[22] Falandysz, J., Bona, H., & Danisiewicz, D. (1994a). Silver content of wild-grown mushrooms from northern Poland. Zeitschrift für Lebensmittel Untersuchung und Forschung, 199, 222–224. DOI: 10.1007/bf01193449. http://dx.doi.org/10.1007/BF0119344910.1007/BF01193449Search in Google Scholar

[23] Falandysz, J., Bona, H., & Danisiewicz, D. (1994b). Silver uptake by Agaricus bisporus from an artificially enriched substrate. Zeitschrift für Lebensmittel Untersuchung und Forschung, 199, 225–228. DOI: 10.1007/bf01193450. http://dx.doi.org/10.1007/BF0119345010.1007/BF01193450Search in Google Scholar

[24] Falandysz, J., Kotecka, W., & Kannan, K. (1994c). Mercury, lead, cadmium, manganese, copper, iron and zinc concentrations in poultry, rabbit and sheep from the northern part of Poland. Science of the Total Environment, 141, 51–57. DOI: 10.1016/0048-9697(94)90017-5. http://dx.doi.org/10.1016/0048-9697(94)90017-510.1016/0048-9697(94)90017-5Search in Google Scholar

[25] Falandysz, J., & Danisiewicz, D. (1995). Bioconcentration factors (BCF) of silver in wild Agaricus campestris. Bulletin of Environmental Contamination and Toxicology, 55, 122–129. DOI: 10.1007/bf00212398. http://dx.doi.org/10.1007/BF0021239810.1007/BF00212398Search in Google Scholar PubMed

[26] Falandysz, J., & Chwir, A. (1997). The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wiślana sand-bar, Northern Poland. Science of the Total Environment, 203, 221–228. DOI: 10.1016/s0048-9697(97)00150-2. http://dx.doi.org/10.1016/S0048-9697(97)00150-210.1016/S0048-9697(97)00150-2Search in Google Scholar

[27] Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., & Yamasaki, S. I. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives & Contaminants, 18, 503–513. DOI: 10.1080/02652030119625. 10.1080/02652030119625Search in Google Scholar

[28] Falandysz, J. (2002). Mercury in mushrooms and soil of the Tarnobrzeska plain, south-eastern Poland. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 37, 343–352. DOI: 10.1081/ese-120002833. http://dx.doi.org/10.1081/ESE-12000283310.1081/ESE-120002833Search in Google Scholar

[29] Falandysz, J., Bielawski, L., Kannan, K., Gucia, M., Lipka, K., & Brzostowski, A. (2002a). Mercury in wild mushrooms and underlying soil substrate from the great lakes land in Poland. Journal of Environmental Monitoring, 4, 473–476. DOI: 10.1039/b202946d. http://dx.doi.org/10.1039/b202946d10.1039/b202946dSearch in Google Scholar

[30] Falandysz, J., Lipka, K., Gucia, M., Kawano, M., Strumnik, K., & Kannan, K. (2002b). Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environment International, 28, 421–427. DOI: 10.1016/S0160-4120(02)00067-3. http://dx.doi.org/10.1016/S0160-4120(02)00067-310.1016/S0160-4120(02)00067-3Search in Google Scholar

[31] Falandysz, J., Brzostowski, A., Kawano, M., Kannan, K., Puzyn, T., & Lipka, K. (2003). Concentrations of mercury in wild growing higher fungi and underlying substrate near Lake Wdzydze, Poland. Water, Air, and Soil Pollution, 148, 127–137. DOI: 10.1023/a:1025422017868. http://dx.doi.org/10.1023/A:102542201786810.1023/A:1025422017868Search in Google Scholar

[32] Falandysz, J., & Brzostowski, A. (2007). Mercury and its bioconcentration factors in Poison Pax (Paxillus involutus) from various sites in Poland. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 42, 1095–1100. DOI: 10.1080/10934520701418599. http://dx.doi.org/10.1080/1093452070141859910.1080/10934520701418599Search in Google Scholar PubMed

[33] Falandysz, J., Gucia, M., & Mazur, A. (2007). Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 42, 735–740. DOI: 10.1080/03601230701466005. http://dx.doi.org/10.1080/0360123070146600510.1080/03601230701466005Search in Google Scholar PubMed

[34] Falandysz, J. (2008). Selenium in edible mushrooms. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 26, 256–299. DOI: 10.1080/10590500802350086. http://dx.doi.org/10.1080/1059050080235008610.1080/10590500802350086Search in Google Scholar PubMed

[35] Falandysz, J., & Gucia, M. (2008). Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30, 121–125. DOI: 10.1007/s10653-008-9133-5. http://dx.doi.org/10.1007/s10653-008-9133-510.1007/s10653-008-9133-5Search in Google Scholar PubMed

[36] Falandysz, J., Kunito, T., Kubota, R., Bielawski, L., Frankowska, A., Falandysz, J. J., & Tanabe, S. (2008a). Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43, 1692–1699. DOI: 10.1080/10934520802330206. http://dx.doi.org/10.1080/1093452080233020610.1080/10934520802330206Search in Google Scholar PubMed

[37] Falandysz, J., Kunito, T., Kubota, R., Gucia, M., Mazur, A., Falandysz, J. J., & Tanabe, S. (2008b). Some mineral constituents of Parasol Mushroom (Macrolepiota procera). Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 43, 187–192. DOI: 10.1080/03601230701795247. http://dx.doi.org/10.1080/0360123070179524710.1080/03601230701795247Search in Google Scholar PubMed

[38] Falandysz, J., Frankowska, A., Jarzyńska, G., Dryžałowska, A., Kojta, A. K., & Zhang, D. (2011). Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 46, 231–246. DOI: 10.1080/03601234.2011.540528 http://dx.doi.org/10.1080/03601234.2011.54052810.1080/03601234.2011.540528Search in Google Scholar PubMed

[39] Falandysz, J. (2012). Comments on “Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey“. doi: 10.1007/s00128-011-0357-1. Bulletin of Environmental Contamination and Toxicology, 88, 651–653. DOI: 10.1007/s00128-012-0566-2. http://dx.doi.org/10.1007/s00128-012-0566-210.1007/s00128-012-0566-2Search in Google Scholar PubMed PubMed Central

[40] Falandysz, J., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Wydmánska, D., Kowalewska, I., Wacko, A., Szlosowska, M., Kannan, K., & Szefer, P. (2012a). Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Additives & Contaminants: Part A, 29, 951–961. DOI: 10.1080/19440049.2012.662702 http://dx.doi.org/10.1080/19440049.2012.66270210.1080/19440049.2012.662702Search in Google Scholar PubMed

[41] Falandysz, J., Widzicka, E., Kojta, A. K., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Danisiewicz-Czupryńska, D., Lenz, E., & Nnorom, I. C. (2012b). Mercury in Common Chanterelles mushrooms: Cantharellus spp. update. Food Chemistry, 133, 842–850. DOI: 10.1016/j.foodchem.2012.01.10 http://dx.doi.org/10.1016/j.foodchem.2012.01.102Search in Google Scholar

[42] Falandysz, J., & Borovička, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology, 97, 477–501. DOI: 10.1007/s00253-012-4552-8. http://dx.doi.org/10.1007/s00253-012-4552-810.1007/s00253-012-4552-8Search in Google Scholar PubMed PubMed Central

[43] Frankowska, A., Ziółkowska, J., Bielawski, L., & Falandysz, J. (2010). Profile and bioconcentration of minerals by King Bolete (Boletes edulis) from the Płocka Dale in Poland. Food Additives and Contaminants, Part B: Surveillance, 3, 1–6. DOI: 10.1080/19440040903505232. http://dx.doi.org/10.1080/1944004090350523210.1080/19440040903505232Search in Google Scholar PubMed

[44] García, M. A., Alonso, J., Fernández, M. I., & Melgar, M. J. (1998). Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology, 34, 330–335. DOI: 10.1007/s002449900326. http://dx.doi.org/10.1007/s00244990032610.1007/s002449900326Search in Google Scholar PubMed

[45] García, M. á., Alonso, J., & Melgar, M. J. (2009). Lead in edible mushrooms. Levels and bioconcentration factors. Journal of Hazardous Materials, 167, 777–783. DOI: 10.1016/j.jhazmat.2009.01.058. http://dx.doi.org/10.1016/j.jhazmat.2009.01.05810.1016/j.jhazmat.2009.01.058Search in Google Scholar PubMed

[46] Gumińska, B., & Wojewoda, W. (1988). Grzyby i ich oznaczanie. Warszawa, Poland: Pánstwowe Wydawnictwo Rolnicze i Lésne. (in Polish) Search in Google Scholar

[47] Jarzyńska, G., & Falandysz, J. (2011a). The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 46, 569–573. DOI: 10.1080/10934529.2011.562816. http://dx.doi.org/10.1080/10934529.2011.56281610.1080/10934529.2011.562816Search in Google Scholar PubMed

[48] Jarzyńska, G., & Falandysz, J. (2011b). Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus) — consequences to human health. Environment International, 37, 882–888. DOI: 10.1016/j.envint.2011.02.017. http://dx.doi.org/10.1016/j.envint.2011.02.01710.1016/j.envint.2011.02.017Search in Google Scholar PubMed

[49] JECFA (1978). Evaluation of certain food additives and contaminants. Twenty-second report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: WHO Technical Report Series 631. Search in Google Scholar

[50] JECFA (2007). Evaluation of certain food additives and contaminants. Sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: WHO Technical Report Series 940. Search in Google Scholar

[51] Li, T., Zhang, J., Shen, T., Shi, Y. D., Yang, S. B., Zhang, T., Li, J. Q., Wang, Y. Z., & Liu, H. (2013). Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China. Chemical Papers, 67, 672–678. DOI: 10.2478/s11696-013-0353-5. http://dx.doi.org/10.2478/s11696-013-0353-510.2478/s11696-013-0353-5Search in Google Scholar

[52] Melgar, M. J., Alonso, J., Pérez-López, M., & García, M. A. (1998). Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 33, 439–455. DOI: 10.1080/03601239809373156. http://dx.doi.org/10.1080/0360123980937315610.1080/03601239809373156Search in Google Scholar PubMed

[53] Melgar, M. J., Alonso, J., & García, M. A. (2007). Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Science of the Total Environment, 385, 12–19. DOI: 10.1016/j.scitotenv.2007.07.011. http://dx.doi.org/10.1016/j.scitotenv.2007.07.01110.1016/j.scitotenv.2007.07.011Search in Google Scholar PubMed

[54] Melgar, M. J., Alonso, J., & García, M. A. (2009). Mercury in edible mushrooms and soil: Bioconcentration factors and toxicological risk. Science of the Total Environment, 407, 5328–5334. DOI: 10.1016/j.scitotenv.2009.07.001. http://dx.doi.org/10.1016/j.scitotenv.2009.07.00110.1016/j.scitotenv.2009.07.001Search in Google Scholar PubMed

[55] Paoletti, E., & Günthondt-Georg, M. S. (2006). Growth responses and element content of Quercus pubescens seedlings under acidic and heavy metal contamination. Forest Snow Lands Research, 80, 323–337. Search in Google Scholar

[56] Rose, M., Baxter, M., Brereton, N., & Baskaran, C. (2010). Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Additives & Contaminants: Part A, 27, 1380–1404. DOI: 10.1080/19440049.2010.496794. http://dx.doi.org/10.1080/19440049.2010.49679410.1080/19440049.2010.496794Search in Google Scholar PubMed

[57] Schultz, H., & Breidenbach, A. W. (1988). United States environmental protection agency peer review workshop on mercury issues, October 26–27, 1987: Summary Report. Washington, DC, USA: U.S. Environmental Protection Agency. Search in Google Scholar

[58] Stijve, T., & Roschnik, R. (1974). Mercury and methyl mercury content of different species of fungi. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 65, 209–220. Search in Google Scholar

[59] Stijve, T. (1992). Certain mushrooms do accumulate heavy metals. Mushroom, the Journal of Wild Mushrooming, 38, 9–14. Search in Google Scholar

[60] Szubstarska, J., Jarzyńska, G., & Falandysz, J. (2012). Trace elements of Variegated Boletes (Suillus variegatus) fungi. Chemical Papers, 66, 1026–1032. DOI: 10.2478/s11696-012-0216-5. http://dx.doi.org/10.2478/s11696-012-0216-510.2478/s11696-012-0216-5Search in Google Scholar

[61] Vetter, J., & Siller, I. (1997). Ásványi anyagok mennyiségének alakulása a gomba termötestben (Macrolepiota procera). Mikológiai Közlemények, 36, 33–38. (in Hungarian) Search in Google Scholar

[62] WHO (1989). Toxicological evaluation of certain food additives and contaminants. 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Food Additives Series No. 24. Search in Google Scholar

[63] WHO (1993). Evaluation of certain food additives and contaminants. 41st Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, Switzerland: Technical Report Series No. 837. Search in Google Scholar

[64] Wyrzykowska, B., Szymczyk, K., Ichichashi, H., Falandysz, J., Skwarzec, B., & Yamasaki, S. (2001). Application of ICP sector fieldMS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. Journal of Agricultural and Food Chemistry, 49, 3425–3431. DOI: 10.1021/jf010184g. http://dx.doi.org/10.1021/jf010184g10.1021/jf010184gSearch in Google Scholar PubMed

[65] Zhang, D., Frankowska, A., Jarzyńska, G., Kojta, A. K., Drewnowska, M., Wydmánska, D., Bielawski, L., Wang, J. P., & Falandysz, J. (2010). Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. African Journal of Agricultural Research, 5, 3050–3055. Search in Google Scholar

[66] Zimmermannová, K., Svoboda, L., & Kalač, P. (2001). Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spiš region, Slovakia. Ekológia (Bratislava), 20, 440–446. Search in Google Scholar

Published Online: 2013-12-20
Published in Print: 2014-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of mercury species using thermal desorption analysis in AAS
  2. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
  3. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose
  4. Effect of salicin on induction and carbon catabolite repression of endoxylanase synthesis in Penicillium janthinellum MTCC 10889
  5. Recovery of acetaminophen from aqueous solutions using a supported liquid membrane based on a quaternary ammonium salt as ionophore
  6. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems
  7. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics
  8. Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area
  9. Evaluation of antioxidants in Dong quai (Angelica sinensis) and its dietary supplements
  10. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes
  11. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid
  12. I2-mediated α-selective Ferrier glycosylation approach to synthesis of O-glycosyl amino acids
  13. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature
  14. Development of oxopyrrolidine-based anti-cancer compounds: DNA binding, in silico, cell line studies, drug-likeness and mechanism at supra-molecular level
  15. Clay and charcoal composites: characterisation and application of factorial design analysis for dye adsorption
  16. Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink
  17. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0477-7/html?srsltid=AfmBOoqXPK7meVOwVTUAFT2vkDnWoveo7OhysuqGO38k0YDw4tLrU-EF
Scroll to top button