Startseite Effect of flow-rate on ethanol separation in membrane distillation process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of flow-rate on ethanol separation in membrane distillation process

  • Marek Gryta EMAIL logo
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The separation of diluted ethanol solutions and fermentation broths by membrane distillation was investigated. The influence of stream flow-rate on the ethanol flux was studied. An evaluation of the process conditions on the separation degree of ethanol was performed with the application of hydrophobic capillary membranes composed of polypropylene. By removing the alcohol via membrane distillation, it is possible to achieve a higher content of ethanol in the permeate than that in the broth. The enrichment coefficient amounted to 4–6.5, and decreased with an increase of the ethanol concentration in the broth. It was found that the flow-rate affects the value of the enrichment coefficient. A positive influence of carbon dioxide on the ethanol transport through the capillary membrane was observed. The evolution of CO2 bubbles from the broth increases the stream turbulence, probably enhancing the alcohol concentration in the layer adjacent to the membrane surface.

[1] Bai, F.W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89–105. DOI: 10.1016/j.biotechadv.2007.09.002. http://dx.doi.org/10.1016/j.biotechadv.2007.09.00210.1016/j.biotechadv.2007.09.002Suche in Google Scholar

[2] Banat, F. A., & Simandl, J. (1999a). Membrane distillation for dilute ethanol separation from aqueous streams. Journal of Membrane Science, 163, 333–348. DOI: 10.1016/s0376-7388(99)00178-7. http://dx.doi.org/10.1016/S0376-7388(99)00178-710.1016/S0376-7388(99)00178-7Suche in Google Scholar

[3] Banat, F. A., Al-Rub, F. A., & Shannag, M. (1999b). Modeling of dilute ethanol-water mixture separation by membrane distillation. Separation and Purification Technology, 16, 119–131. DOI: 10.1016/s1383-5866(98)00117-8. http://dx.doi.org/10.1016/S1383-5866(98)00117-810.1016/S1383-5866(98)00117-8Suche in Google Scholar

[4] Barancewicz, M., & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chemical Papers, 66, 85–91. DOI: 10.2478/s11696-011-0088-0. http://dx.doi.org/10.2478/s11696-011-0088-010.2478/s11696-011-0088-0Suche in Google Scholar

[5] Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457. DOI: 10.1016/j.biortech.2007.01.002. http://dx.doi.org/10.1016/j.biortech.2007.01.00210.1016/j.biortech.2007.01.002Suche in Google Scholar

[6] Calibo, R. L., Matsumura, M., & Kataoka, H. (1989). Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module. Journal of Fermentation and Bioengineering, 67, 40–45. DOI: 10.1016/0922-338x(89)90084-6. http://dx.doi.org/10.1016/0922-338X(89)90084-610.1016/0922-338X(89)90084-6Suche in Google Scholar

[7] Choi, G. W., Kang, H. W., & Moon, S. K. (2009). Repeatedbatch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Applied Microbiology and Biotechnology, 84, 261–269. DOI: 10.1007/s00253-009-1946-3. http://dx.doi.org/10.1007/s00253-009-1946-310.1007/s00253-009-1946-3Suche in Google Scholar

[8] Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18. DOI: 10.1016/j.pecs.2006.06.001. http://dx.doi.org/10.1016/j.pecs.2006.06.00110.1016/j.pecs.2006.06.001Suche in Google Scholar

[9] García-Payo, M. C., Izquierdo-Gil, M. A., & Fernández-Pineda, C. (2000). Air gap membrane distillation of aqueous alcohol solutions. Journal of Membrane Science, 169, 61–80. DOI: 10.1016/s0376-7388(99)00326-9. http://dx.doi.org/10.1016/S0376-7388(99)00326-910.1016/S0376-7388(99)00326-9Suche in Google Scholar

[10] Gryta, M., Morawski, A. W., & Tomaszewska, M. (2000). Ethanol production in membrane distillation bioreactor. Catalysis Today, 56, 159–165. DOI: 10.1016/s0920-5861(99)00272-2. http://dx.doi.org/10.1016/S0920-5861(99)00272-210.1016/S0920-5861(99)00272-2Suche in Google Scholar

[11] Gryta, M. (2001). The fermentation process integrated with membrane distillation. Separation and Purification Technology, 24, 283–296. DOI: 10.1016/s1383-5866(01)00132-0. http://dx.doi.org/10.1016/S1383-5866(01)00132-010.1016/S1383-5866(01)00132-0Suche in Google Scholar

[12] Gryta, M. (2008). Fouling in direct contact membrane distillation process. Journal of Membrane Science, 325, 383–394. DOI: 10.1016/j.memsci.2008.08.001. http://dx.doi.org/10.1016/j.memsci.2008.08.00110.1016/j.memsci.2008.08.001Suche in Google Scholar

[13] Gryta, M. (2012) Wettability of polypropylene capillary membranes during the membrane distillation process. Chemical Papers, 66, 92–98. DOI: 10.2478/s11696-011-0096-0. http://dx.doi.org/10.2478/s11696-011-0096-010.2478/s11696-011-0096-0Suche in Google Scholar

[14] Gyamerah, M., & Glover, J. (1996). Production of ethanol by continuous fermentation and liquid-liquid extraction. Journal of Chemical Technology and Biotechnology, 66, 145–152. DOI: 10.1002/(SICI)1097-4660(199606) 66: 2<145::AIDJCTB484>3.0.CO;2-2. http://dx.doi.org/10.1002/(SICI)1097-4660(199606)66:2<145::AID-JCTB484>3.0.CO;2-210.1002/(SICI)1097-4660(199606)66:2<145::AID-JCTB484>3.0.CO;2-2Suche in Google Scholar

[15] Izquierdo-Gil, M. A., & Jonsson, G. (2003). Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). Journal of Membrane Science, 214, 113–130. DOI: 10.1016/s0376-7388(02)00540-9. http://dx.doi.org/10.1016/S0376-7388(02)00540-910.1016/S0376-7388(02)00540-9Suche in Google Scholar

[16] Kaewkannetra, P., Chutinate, N., Moonamart, S., Kamsan, T., & Chiu, T. Y. (2011). Separation of ethanol from ethanol-water mixture and fermented sweet sorghum juice using pervaporation membrane reactor. Desalination, 271, 88–91. DOI: 1016/j.desal.2010.12.012. http://dx.doi.org/10.1016/j.desal.2010.12.01210.1016/j.desal.2010.12.012Suche in Google Scholar

[17] Kolesárová, N., Hutňan, M., Špalková, V., Kuffa, R., & Bodík, I. (2011). Anaerobic treatment of biodiesel by-products in a pilot scale reactor. Chemical Papers, 65, 447–453. DOI: 10.2478/s11696-011-0035-0. http://dx.doi.org/10.2478/s11696-011-0035-010.2478/s11696-011-0035-0Suche in Google Scholar

[18] Lee, C. H., & Hong, W. H. (2001). Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol. Journal of Membrane Science, 188, 79–86. DOI: 10.1016/s0376-7388(01)00373-8. http://dx.doi.org/10.1016/S0376-7388(01)00373-810.1016/S0376-7388(01)00373-8Suche in Google Scholar

[19] Maiorella, B. L., Blanch, H. W., & Wilke, C. R. (1984). Economic evaluation of alternative ethanol fermentation processes. Biotechnology and Bioengineering, 26, 1003–1025. DOI: 10.1002/bit.260260902. http://dx.doi.org/10.1002/bit.26026090210.1002/bit.260260902Suche in Google Scholar

[20] Mori, Y., & Inaba, T. (1990). Ethanol production from starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum. Biotechnology and Bioengineering, 36, 849–853. DOI: 10.1002/bit.260360815. http://dx.doi.org/10.1002/bit.26036081510.1002/bit.260360815Suche in Google Scholar

[21] Nakao, S. i., Saitoh, F., Asakura, T., Toda, K., & Kimura, S. (1987). Continuous ethanol extraction by pervaporation from a membrane bioreactor. Journal of Membrane Science, 30, 273–287. DOI: 10.1016/s0376-7388(00)80123-4. http://dx.doi.org/10.1016/S0376-7388(00)80123-410.1016/S0376-7388(00)80123-4Suche in Google Scholar

[22] O’Brien, D. J., Roth, L. H., & McAloon, A. J. (2000). Ethanol production by continuous fermentation-pervaporation: a preliminary economic analysis. Journal of Membrane Science, 166, 105–111. DOI: 10.1016/s0376-7388(99)00255-0. http://dx.doi.org/10.1016/S0376-7388(99)00255-010.1016/S0376-7388(99)00255-0Suche in Google Scholar

[23] Park, B. G., Lee, W. G., Chang, Y. K., & Chang, H. N. (1999). Long-term operation of continuous high cell density culture of Saccharomyces cerevisiae with membrane filtration and on-line cell concentration monitoring. Bioprocess Engineering, 21, 97–100. DOI: 10.1007/pl00009070. 10.1007/PL00009070Suche in Google Scholar

[24] Ponton, J. W. (2009). Biofuels: Thermodynamic sense and nonsense. Journal of Cleaner Production, 17, 896–899. DOI: 10.1016/j.jclepro.2009.02.003. http://dx.doi.org/10.1016/j.jclepro.2009.02.00310.1016/j.jclepro.2009.02.003Suche in Google Scholar

[25] Sassner, P., Galbe, M., & Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 32, 422–430. DOI: 10.1016/j.biombioe.2007.10.014. http://dx.doi.org/10.1016/j.biombioe.2007.10.01410.1016/j.biombioe.2007.10.014Suche in Google Scholar

[26] Sonntag, H. (1977). Lehrbuch der Kolloidwissenschaft. Berlin, Germany: VEB Deutscher Verlag der Wissenschaften. (in German) Suche in Google Scholar

[27] Szitkai, Z., Lelkes, Z., Rev, E., & Fonyo, Z. (2002). Optimization of hybrid ethanol dehydration systems. Chemical Engineering and Processing: Process Intensification, 41, 631–646. DOI: 10.1016/s0255-2701(01)00192-1. http://dx.doi.org/10.1016/S0255-2701(01)00192-110.1016/S0255-2701(01)00192-1Suche in Google Scholar

[28] Takaya, M., Matsumoto, N., & Yanase, H. (2002). Characterization of membrane bioreactor for dry wine production. Journal of Bioscience and Bioengineering, 93, 240–244. DOI: 10.1016/s1389-1723(02)80021-4. 10.1016/S1389-1723(02)80021-4Suche in Google Scholar

[29] Uragami, T. (2006). Concentration of aqueous ethanol solutions by porous poly(dimethylsiloxane) membranes during temperature-difference controlling evapomeation. Desalination, 193, 335–343. DOI: 10.1016/j.desal.2005.09.026. http://dx.doi.org/10.1016/j.desal.2005.09.02610.1016/j.desal.2005.09.026Suche in Google Scholar

[30] Wu, Y., Xiao, Z. Y., Huang, W. X., & Zhong, Y. H. (2005). Mass transfer in pervaporation of active fermentation broth with a composite PDMS membrane. Separation and Purification Technology, 42, 47–53. DOI: 10.1016/j.seppur.2004.06.003. http://dx.doi.org/10.1016/j.seppur.2004.06.00310.1016/j.seppur.2004.06.003Suche in Google Scholar

[31] Yu, H., Yang, X., Wang, R., & Fane, A. G. (2011). Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science, 384, 107–116. DOI: 10.1016/j.memsci.2011.09.011. http://dx.doi.org/10.1016/j.memsci.2011.09.01110.1016/j.memsci.2011.09.011Suche in Google Scholar

[32] Yu, H., Yang, X., Wang, R., & Fane, A. G. (2012). Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation. Journal of Membrane Science, 405–406, 38–47. DOI: 10.1016/j.memsci.2012.02.035. http://dx.doi.org/10.1016/j.memsci.2012.02.03510.1016/j.memsci.2012.02.035Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0382-0/pdf
Button zum nach oben scrollen