Abstract
The highest yields of biosurfactants were obtained by: (i) Pseudozyma antarctica (107.2 g L−1) cultivated in a medium containing post-refining waste; (ii) Pseudozyma aphidis (77.7 g L−1); and (iii) Starmerella bombicola (93.8 g L−1) both cultivated in a medium with soapstock; (iv)Pichia jadinii (67.3 g L−1) cultivated in a medium supplemented with waste frying oil. It was found that the biosurfactant synthesis yield increased in all strains when the cell surface hydrophobicity reached 70–80 %, enabling the microbial cells to make good contact with hydrophobic substrates. The lowest surface tension of the post-cultivation medium was from 32.0 mN m−1 to 37.8 mN m−1. However, this parameter (which was also determined by a drop collapse assay) was of limited use in monitoring biosurfactant synthesis in this study. The crude glycerol was not a good substrate for biosurfactant synthesis although, in the case of P. aphidis, 67.4 g L−1 of biosurfactants were obtained after cultivation in the medium supplemented with glycerol fraction (GF2). In a low-cost medium containing soapstock and whey permeate or molasses, about 90 g L−1 of mannosylerythritol lipids were synthesised by P. aphidis and approximately 40 g L−1 by P. antarctica.
[1] Adamczak, M., & Bednarski, W. (2000a). Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnology Letters, 22, 313–316. DOI: 10.1023/a:1005634802997. http://dx.doi.org/10.1023/A:100563480299710.1023/A:1005634802997Suche in Google Scholar
[2] Adamczak, M., & Bednarski, W. (2000b). Properties and yield of synthesis of mannosylerythritol lipids by Candida antarctica. In S. Bielecki, J. Tramper, & J. Polak (Eds.), Food Biotechnology (pp. 229–234). Amsterdam, The Nertherlands: Elsevier. 10.1016/S0921-0423(00)80072-6Suche in Google Scholar
[3] Ashby, R. D., & Solaiman, D. K. Y. (2010). The influence of increasing media methanol concentration on sophorolipid biosynthesis from glycerol-based feedstocks. Biotechnology Letters, 32, 1429–1437. DOI: 10.1007/s10529-010-0310-0. http://dx.doi.org/10.1007/s10529-010-0310-010.1007/s10529-010-0310-0Suche in Google Scholar PubMed
[4] Bednarski, W., Adamczak, M., Tomasik, J., & Płaszczyk, M. (2004). Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresource Technology, 95, 15–18. DOI:10.1016/j.biortech.2004.01.009. http://dx.doi.org/10.1016/j.biortech.2004.01.00910.1016/j.biortech.2004.01.009Suche in Google Scholar PubMed
[5] Bednarski, W., Narwojsz, M., Adamczak, M., & Nawotka, R. (2006). Carbon-source-dependent synthesis and composition of biosurfactant synthesized by Pseudozyma antarctica. Environmental Biotechnology, 2, 31–36. Suche in Google Scholar
[6] Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2009). Application of bioemulsi-fiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407, 3634–3640. DOI:10.1016/j.scitotenv.2008.07.008. http://dx.doi.org/10.1016/j.scitotenv.2008.07.00810.1016/j.scitotenv.2008.07.008Suche in Google Scholar PubMed
[7] Cameotra, S. S., & Makkar, R. S. (2004). Recent applications of biosurfactants as biological and immunological molecules. Current Opinion in Microbiology, 7, 262–266. DOI:10.1016/j.mib.2004.04.006. http://dx.doi.org/10.1016/j.mib.2004.04.00610.1016/j.mib.2004.04.006Suche in Google Scholar PubMed
[8] Coombs, A. (2007). Glycerin bioprocessing goes green. Nature Biotechnology, 25, 953–954. DOI: 10.1038/nbt0907-953. http://dx.doi.org/10.1038/nbt0907-95310.1038/nbt0907-953Suche in Google Scholar PubMed
[9] Daverey, A., & Pakshirajan, K. (2009). Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Research International, 42, 499–504. DOI:10.1016/j.foodres.2009.01.014. http://dx.doi.org/10.1016/j.foodres.2009.01.01410.1016/j.foodres.2009.01.014Suche in Google Scholar
[10] Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64. Suche in Google Scholar
[11] Felse, P. A., Shah, V., Chan, J., Rao, K. J., & Gross, R. A. (2007). Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme and Microbial Technology, 40, 316–323. DOI:10.1016/j.enzmictec.2006.04.013. http://dx.doi.org/10.1016/j.enzmictec.2006.04.01310.1016/j.enzmictec.2006.04.013Suche in Google Scholar
[12] Fleurackers, S. J. J. (2006). On the use of waste frying oil in the synthesis of sophorolipids. European Journal of Lipid Science and Technology, 108, 5–12. DOI:10.1002/ejlt.200500237. http://dx.doi.org/10.1002/ejlt.20050023710.1002/ejlt.200500237Suche in Google Scholar
[13] Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509. 10.1016/S0021-9258(18)64849-5Suche in Google Scholar
[14] Giannopoulos, A., Makri, A., & Aggelis, G. (2011). Production of biosurfactants from yeasts cultivated on glycerol. In FEBS Workshop: Microbial Lipids from Genomics to Lipidomics, May 13–15, 2010 (pp. 92). Vienna, Austria: Graz University of Technology. Suche in Google Scholar
[15] Glenns, R. N., & Cooper, D. G. (2006). Effect of substrate on sophorolipid properties. Journal of the American Oil Chemists’ Society, 83, 137–145. DOI: 10.1007/s11746-006-1186-y. http://dx.doi.org/10.1007/s11746-006-1186-y10.1007/s11746-006-1186-ySuche in Google Scholar
[16] Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants — from energy-saving materials to gene delivery carriers —. Journal of Bioscience and Bioengineering, 94, 187–201. DOI: 10.1016/s1389-1723(02)80149-9. 10.1016/S1389-1723(02)80149-9Suche in Google Scholar
[17] Kitamoto, D., Morita, T., Fukuoka, T., Konishi, M., & Imura, T. (2009). Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid & Interface Science, 14, 315–328. DOI:10.1016/j.cocis.2009.05.009. http://dx.doi.org/10.1016/j.cocis.2009.05.00910.1016/j.cocis.2009.05.009Suche in Google Scholar
[18] Kuiper, I., Lagendijk, E. L., Pickford, R., Derrick, J. P., Lamers, G. E. M., Thomas-Oates, J. E., Lugtenberg, B. J. J., & Bloemberg, G. V. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Molecular Microbiology, 51, 97–113. DOI: 10.1046/j.1365-2958.2003.03751.x. http://dx.doi.org/10.1046/j.1365-2958.2003.03751.x10.1046/j.1365-2958.2003.03751.xSuche in Google Scholar PubMed
[19] Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 1, 5. DOI: 10.1186/2191-0855-1-5. http://dx.doi.org/10.1186/2191-0855-1-510.1186/2191-0855-1-5Suche in Google Scholar PubMed PubMed Central
[20] Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007a). Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 104, 78–81. DOI: 10.1263/jbb.104.78. http://dx.doi.org/10.1263/jbb.104.7810.1263/jbb.104.78Suche in Google Scholar PubMed
[21] Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007b). Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 74, 307–315. DOI: 10.1007/s00253-006-0672-3. http://dx.doi.org/10.1007/s00253-006-0672-310.1007/s00253-006-0672-3Suche in Google Scholar PubMed
[22] Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2009). Recent advances in the conversion of bioglycerol into value-added products. European Journal of Lipid Science and Technology, 111, 788–799. DOI:10.1002/ejlt.200800210. http://dx.doi.org/10.1002/ejlt.20080021010.1002/ejlt.200800210Suche in Google Scholar
[23] Papanikolaou, S., Fick, M., & Aggelis, G. (2004). The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 79, 1189–1196. DOI: 10.1002/jctb.1103. http://dx.doi.org/10.1002/jctb.110310.1002/jctb.1103Suche in Google Scholar
[24] Pinzon, N. M., Aukema, K. G., Gralnick, J. A., & Wackett, L. P. (2011). Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format. mBio, 2, e00109–11. DOI: 10.1128/mbio.00109-11. http://dx.doi.org/10.1128/mBio.00109-1110.1128/mBio.00109-11Suche in Google Scholar PubMed PubMed Central
[25] Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy, 57, 609–618. DOI: 10.1093/jac/dkl024. http://dx.doi.org/10.1093/jac/dkl02410.1093/jac/dkl024Suche in Google Scholar PubMed
[26] Rosenberg, E., & Ron, E. Z. (1999). High- and low-molecularmass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154–162. DOI: 10.1007/s002530051502. http://dx.doi.org/10.1007/s00253005150210.1007/s002530051502Suche in Google Scholar PubMed
[27] Rosenberg, M., Gutnick, D., & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33. DOI: 10.1111/j.1574-6968.1980.tb05599.x. http://dx.doi.org/10.1111/j.1574-6968.1980.tb05599.x10.1111/j.1574-6968.1980.tb05599.xSuche in Google Scholar
[28] Rymowicz, W., Rywińska, A., & Gładkowski, W. (2008). Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chemical Papers, 62, 239–246. DOI: 10.2478/s11696-008-0018-y. http://dx.doi.org/10.2478/s11696-008-0018-y10.2478/s11696-008-0018-ySuche in Google Scholar
[29] Siloto, R. M. P., Truksa, M., He, X. H., McKeon, T., & Weselake, R. J. (2009). Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids, 44, 963–973. DOI: 10.1007/s11745-009-3336-0. http://dx.doi.org/10.1007/s11745-009-3336-010.1007/s11745-009-3336-0Suche in Google Scholar PubMed
[30] Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, 99–121. DOI:10.1016/j.biotechadv.2006.10.004. http://dx.doi.org/10.1016/j.biotechadv.2006.10.00410.1016/j.biotechadv.2006.10.004Suche in Google Scholar PubMed
[31] Smyth, T. J. P., Perfumo, A., Marchant, R., & Banat, I. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 3705–3723). Heidelberg, Germany: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-77587-4_29110.1007/978-3-540-77587-4_291Suche in Google Scholar
[32] Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., & Sarubbo, L. A. (2008). Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43, 912–917. DOI:10.1016/j.procbio.2008.04.013. http://dx.doi.org/10.1016/j.procbio.2008.04.01310.1016/j.procbio.2008.04.013Suche in Google Scholar
[33] Takahashi, M., Morita, T., Wada, K., Hirose, N., Fukuoka, T., Imura, T., & Kitamoto, D. (2011). Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. Journal of Oleo Science, 60, 267–273. http://dx.doi.org/10.5650/jos.60.26710.5650/jos.60.267Suche in Google Scholar PubMed
[34] Tang, S., Boehme, L., Lam, H., & Zhang, Z. S. (2009). Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochemical Engineering Journal, 43, 157–162. DOI:10.1016/j.bej.2008.09.020. http://dx.doi.org/10.1016/j.bej.2008.09.02010.1016/j.bej.2008.09.020Suche in Google Scholar
[35] Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., & Kanzaki, H. (2007). Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresource Technology, 98, 1149–1153. DOI:10.1016/j.biortech.2005.10.045. http://dx.doi.org/10.1016/j.biortech.2005.10.04510.1016/j.biortech.2005.10.045Suche in Google Scholar PubMed
[36] Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 45, 686–691. DOI: 10.1111/j.1472-765x.2007.02256.x. http://dx.doi.org/10.1111/j.1472-765X.2007.02256.x10.1111/j.1472-765X.2007.02256.xSuche in Google Scholar PubMed
[37] Transparency Market Research (2012). Biosurfactants market — global scenario, raw material and consumption trends, industry analysis, size, share and forecasts, 2011–2018. Retreived December 18, 2012, from http://www.transparencymarketresearch.com/biosurfactants-market.html Suche in Google Scholar
[38] Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 24, 604–620. DOI: 10.1016/j.biotechadv.2006.08.001. http://dx.doi.org/10.1016/j.biotechadv.2006.08.00110.1016/j.biotechadv.2006.08.001Suche in Google Scholar PubMed
[39] Vasileva-Tonkova, E., & Gesheva, V. (2004). Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Zeitschrift für Naturforschung C, Journal of Biosciences, 59, 140–145. 10.1515/znc-2004-1-227Suche in Google Scholar PubMed
[40] Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In R. Sen (Ed.), Biosurfactants (pp. 1–13). New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-1-4419-5979-9_110.1007/978-1-4419-5979-9_1Suche in Google Scholar PubMed
[41] Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142. DOI: 10.1007/s00253-004-1733-0. http://dx.doi.org/10.1007/s00253-004-1733-010.1007/s00253-004-1733-0Suche in Google Scholar PubMed
[42] Willumsen, P. A., & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation, 7, 415–423. DOI: 10.1007/bf00056425. http://dx.doi.org/10.1007/BF0005642510.1007/BF00056425Suche in Google Scholar
[43] Yin, H., Qiang, J., Jia, Y., Ye, J. S., Peng, H., Qin, H. M., Zhang, N., & He, B. Y. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44, 302–308. DOI:10.1016/j.procbio.2008.11.003. http://dx.doi.org/10.1016/j.procbio.2008.11.00310.1016/j.procbio.2008.11.003Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes