Startseite Evaluation of waste products in the synthesis of surfactants by yeasts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of waste products in the synthesis of surfactants by yeasts

  • Ewelina Dzięgielewska EMAIL logo und Marek Adamczak
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The highest yields of biosurfactants were obtained by: (i) Pseudozyma antarctica (107.2 g L−1) cultivated in a medium containing post-refining waste; (ii) Pseudozyma aphidis (77.7 g L−1); and (iii) Starmerella bombicola (93.8 g L−1) both cultivated in a medium with soapstock; (iv)Pichia jadinii (67.3 g L−1) cultivated in a medium supplemented with waste frying oil. It was found that the biosurfactant synthesis yield increased in all strains when the cell surface hydrophobicity reached 70–80 %, enabling the microbial cells to make good contact with hydrophobic substrates. The lowest surface tension of the post-cultivation medium was from 32.0 mN m−1 to 37.8 mN m−1. However, this parameter (which was also determined by a drop collapse assay) was of limited use in monitoring biosurfactant synthesis in this study. The crude glycerol was not a good substrate for biosurfactant synthesis although, in the case of P. aphidis, 67.4 g L−1 of biosurfactants were obtained after cultivation in the medium supplemented with glycerol fraction (GF2). In a low-cost medium containing soapstock and whey permeate or molasses, about 90 g L−1 of mannosylerythritol lipids were synthesised by P. aphidis and approximately 40 g L−1 by P. antarctica.

[1] Adamczak, M., & Bednarski, W. (2000a). Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnology Letters, 22, 313–316. DOI: 10.1023/a:1005634802997. http://dx.doi.org/10.1023/A:100563480299710.1023/A:1005634802997Suche in Google Scholar

[2] Adamczak, M., & Bednarski, W. (2000b). Properties and yield of synthesis of mannosylerythritol lipids by Candida antarctica. In S. Bielecki, J. Tramper, & J. Polak (Eds.), Food Biotechnology (pp. 229–234). Amsterdam, The Nertherlands: Elsevier. 10.1016/S0921-0423(00)80072-6Suche in Google Scholar

[3] Ashby, R. D., & Solaiman, D. K. Y. (2010). The influence of increasing media methanol concentration on sophorolipid biosynthesis from glycerol-based feedstocks. Biotechnology Letters, 32, 1429–1437. DOI: 10.1007/s10529-010-0310-0. http://dx.doi.org/10.1007/s10529-010-0310-010.1007/s10529-010-0310-0Suche in Google Scholar PubMed

[4] Bednarski, W., Adamczak, M., Tomasik, J., & Płaszczyk, M. (2004). Application of oil refinery waste in the biosynthesis of glycolipids by yeast. Bioresource Technology, 95, 15–18. DOI:10.1016/j.biortech.2004.01.009. http://dx.doi.org/10.1016/j.biortech.2004.01.00910.1016/j.biortech.2004.01.009Suche in Google Scholar PubMed

[5] Bednarski, W., Narwojsz, M., Adamczak, M., & Nawotka, R. (2006). Carbon-source-dependent synthesis and composition of biosurfactant synthesized by Pseudozyma antarctica. Environmental Biotechnology, 2, 31–36. Suche in Google Scholar

[6] Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2009). Application of bioemulsi-fiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407, 3634–3640. DOI:10.1016/j.scitotenv.2008.07.008. http://dx.doi.org/10.1016/j.scitotenv.2008.07.00810.1016/j.scitotenv.2008.07.008Suche in Google Scholar PubMed

[7] Cameotra, S. S., & Makkar, R. S. (2004). Recent applications of biosurfactants as biological and immunological molecules. Current Opinion in Microbiology, 7, 262–266. DOI:10.1016/j.mib.2004.04.006. http://dx.doi.org/10.1016/j.mib.2004.04.00610.1016/j.mib.2004.04.006Suche in Google Scholar PubMed

[8] Coombs, A. (2007). Glycerin bioprocessing goes green. Nature Biotechnology, 25, 953–954. DOI: 10.1038/nbt0907-953. http://dx.doi.org/10.1038/nbt0907-95310.1038/nbt0907-953Suche in Google Scholar PubMed

[9] Daverey, A., & Pakshirajan, K. (2009). Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Research International, 42, 499–504. DOI:10.1016/j.foodres.2009.01.014. http://dx.doi.org/10.1016/j.foodres.2009.01.01410.1016/j.foodres.2009.01.014Suche in Google Scholar

[10] Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64. Suche in Google Scholar

[11] Felse, P. A., Shah, V., Chan, J., Rao, K. J., & Gross, R. A. (2007). Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enzyme and Microbial Technology, 40, 316–323. DOI:10.1016/j.enzmictec.2006.04.013. http://dx.doi.org/10.1016/j.enzmictec.2006.04.01310.1016/j.enzmictec.2006.04.013Suche in Google Scholar

[12] Fleurackers, S. J. J. (2006). On the use of waste frying oil in the synthesis of sophorolipids. European Journal of Lipid Science and Technology, 108, 5–12. DOI:10.1002/ejlt.200500237. http://dx.doi.org/10.1002/ejlt.20050023710.1002/ejlt.200500237Suche in Google Scholar

[13] Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509. 10.1016/S0021-9258(18)64849-5Suche in Google Scholar

[14] Giannopoulos, A., Makri, A., & Aggelis, G. (2011). Production of biosurfactants from yeasts cultivated on glycerol. In FEBS Workshop: Microbial Lipids from Genomics to Lipidomics, May 13–15, 2010 (pp. 92). Vienna, Austria: Graz University of Technology. Suche in Google Scholar

[15] Glenns, R. N., & Cooper, D. G. (2006). Effect of substrate on sophorolipid properties. Journal of the American Oil Chemists’ Society, 83, 137–145. DOI: 10.1007/s11746-006-1186-y. http://dx.doi.org/10.1007/s11746-006-1186-y10.1007/s11746-006-1186-ySuche in Google Scholar

[16] Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants — from energy-saving materials to gene delivery carriers —. Journal of Bioscience and Bioengineering, 94, 187–201. DOI: 10.1016/s1389-1723(02)80149-9. 10.1016/S1389-1723(02)80149-9Suche in Google Scholar

[17] Kitamoto, D., Morita, T., Fukuoka, T., Konishi, M., & Imura, T. (2009). Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid & Interface Science, 14, 315–328. DOI:10.1016/j.cocis.2009.05.009. http://dx.doi.org/10.1016/j.cocis.2009.05.00910.1016/j.cocis.2009.05.009Suche in Google Scholar

[18] Kuiper, I., Lagendijk, E. L., Pickford, R., Derrick, J. P., Lamers, G. E. M., Thomas-Oates, J. E., Lugtenberg, B. J. J., & Bloemberg, G. V. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Molecular Microbiology, 51, 97–113. DOI: 10.1046/j.1365-2958.2003.03751.x. http://dx.doi.org/10.1046/j.1365-2958.2003.03751.x10.1046/j.1365-2958.2003.03751.xSuche in Google Scholar PubMed

[19] Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 1, 5. DOI: 10.1186/2191-0855-1-5. http://dx.doi.org/10.1186/2191-0855-1-510.1186/2191-0855-1-5Suche in Google Scholar PubMed PubMed Central

[20] Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007a). Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 104, 78–81. DOI: 10.1263/jbb.104.78. http://dx.doi.org/10.1263/jbb.104.7810.1263/jbb.104.78Suche in Google Scholar PubMed

[21] Morita, T., Konishi, M., Fukuoka, T., Imura, T., & Kitamoto, D. (2007b). Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 74, 307–315. DOI: 10.1007/s00253-006-0672-3. http://dx.doi.org/10.1007/s00253-006-0672-310.1007/s00253-006-0672-3Suche in Google Scholar PubMed

[22] Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2009). Recent advances in the conversion of bioglycerol into value-added products. European Journal of Lipid Science and Technology, 111, 788–799. DOI:10.1002/ejlt.200800210. http://dx.doi.org/10.1002/ejlt.20080021010.1002/ejlt.200800210Suche in Google Scholar

[23] Papanikolaou, S., Fick, M., & Aggelis, G. (2004). The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 79, 1189–1196. DOI: 10.1002/jctb.1103. http://dx.doi.org/10.1002/jctb.110310.1002/jctb.1103Suche in Google Scholar

[24] Pinzon, N. M., Aukema, K. G., Gralnick, J. A., & Wackett, L. P. (2011). Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format. mBio, 2, e00109–11. DOI: 10.1128/mbio.00109-11. http://dx.doi.org/10.1128/mBio.00109-1110.1128/mBio.00109-11Suche in Google Scholar PubMed PubMed Central

[25] Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: potential applications in medicine. Journal of Antimicrobial Chemotherapy, 57, 609–618. DOI: 10.1093/jac/dkl024. http://dx.doi.org/10.1093/jac/dkl02410.1093/jac/dkl024Suche in Google Scholar PubMed

[26] Rosenberg, E., & Ron, E. Z. (1999). High- and low-molecularmass microbial surfactants. Applied Microbiology and Biotechnology, 52, 154–162. DOI: 10.1007/s002530051502. http://dx.doi.org/10.1007/s00253005150210.1007/s002530051502Suche in Google Scholar PubMed

[27] Rosenberg, M., Gutnick, D., & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33. DOI: 10.1111/j.1574-6968.1980.tb05599.x. http://dx.doi.org/10.1111/j.1574-6968.1980.tb05599.x10.1111/j.1574-6968.1980.tb05599.xSuche in Google Scholar

[28] Rymowicz, W., Rywińska, A., & Gładkowski, W. (2008). Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chemical Papers, 62, 239–246. DOI: 10.2478/s11696-008-0018-y. http://dx.doi.org/10.2478/s11696-008-0018-y10.2478/s11696-008-0018-ySuche in Google Scholar

[29] Siloto, R. M. P., Truksa, M., He, X. H., McKeon, T., & Weselake, R. J. (2009). Simple methods to detect triacylglycerol biosynthesis in a yeast-based recombinant system. Lipids, 44, 963–973. DOI: 10.1007/s11745-009-3336-0. http://dx.doi.org/10.1007/s11745-009-3336-010.1007/s11745-009-3336-0Suche in Google Scholar PubMed

[30] Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, 99–121. DOI:10.1016/j.biotechadv.2006.10.004. http://dx.doi.org/10.1016/j.biotechadv.2006.10.00410.1016/j.biotechadv.2006.10.004Suche in Google Scholar PubMed

[31] Smyth, T. J. P., Perfumo, A., Marchant, R., & Banat, I. (2010). Isolation and analysis of low molecular weight microbial glycolipids. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 3705–3723). Heidelberg, Germany: Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-77587-4_29110.1007/978-3-540-77587-4_291Suche in Google Scholar

[32] Sobrinho, H. B. S., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., & Sarubbo, L. A. (2008). Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43, 912–917. DOI:10.1016/j.procbio.2008.04.013. http://dx.doi.org/10.1016/j.procbio.2008.04.01310.1016/j.procbio.2008.04.013Suche in Google Scholar

[33] Takahashi, M., Morita, T., Wada, K., Hirose, N., Fukuoka, T., Imura, T., & Kitamoto, D. (2011). Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. Journal of Oleo Science, 60, 267–273. http://dx.doi.org/10.5650/jos.60.26710.5650/jos.60.267Suche in Google Scholar PubMed

[34] Tang, S., Boehme, L., Lam, H., & Zhang, Z. S. (2009). Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochemical Engineering Journal, 43, 157–162. DOI:10.1016/j.bej.2008.09.020. http://dx.doi.org/10.1016/j.bej.2008.09.02010.1016/j.bej.2008.09.020Suche in Google Scholar

[35] Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., & Kanzaki, H. (2007). Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresource Technology, 98, 1149–1153. DOI:10.1016/j.biortech.2005.10.045. http://dx.doi.org/10.1016/j.biortech.2005.10.04510.1016/j.biortech.2005.10.045Suche in Google Scholar PubMed

[36] Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Letters in Applied Microbiology, 45, 686–691. DOI: 10.1111/j.1472-765x.2007.02256.x. http://dx.doi.org/10.1111/j.1472-765X.2007.02256.x10.1111/j.1472-765X.2007.02256.xSuche in Google Scholar PubMed

[37] Transparency Market Research (2012). Biosurfactants market — global scenario, raw material and consumption trends, industry analysis, size, share and forecasts, 2011–2018. Retreived December 18, 2012, from http://www.transparencymarketresearch.com/biosurfactants-market.html Suche in Google Scholar

[38] Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 24, 604–620. DOI: 10.1016/j.biotechadv.2006.08.001. http://dx.doi.org/10.1016/j.biotechadv.2006.08.00110.1016/j.biotechadv.2006.08.001Suche in Google Scholar PubMed

[39] Vasileva-Tonkova, E., & Gesheva, V. (2004). Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Zeitschrift für Naturforschung C, Journal of Biosciences, 59, 140–145. 10.1515/znc-2004-1-227Suche in Google Scholar PubMed

[40] Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In R. Sen (Ed.), Biosurfactants (pp. 1–13). New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-1-4419-5979-9_110.1007/978-1-4419-5979-9_1Suche in Google Scholar PubMed

[41] Willke, T., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology and Biotechnology, 66, 131–142. DOI: 10.1007/s00253-004-1733-0. http://dx.doi.org/10.1007/s00253-004-1733-010.1007/s00253-004-1733-0Suche in Google Scholar PubMed

[42] Willumsen, P. A., & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation, 7, 415–423. DOI: 10.1007/bf00056425. http://dx.doi.org/10.1007/BF0005642510.1007/BF00056425Suche in Google Scholar

[43] Yin, H., Qiang, J., Jia, Y., Ye, J. S., Peng, H., Qin, H. M., Zhang, N., & He, B. Y. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44, 302–308. DOI:10.1016/j.procbio.2008.11.003. http://dx.doi.org/10.1016/j.procbio.2008.11.00310.1016/j.procbio.2008.11.003Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0349-1/pdf
Button zum nach oben scrollen