Home Life Sciences Assessment of the fate of some household micropollutants in urban wastewater treatment plant
Article
Licensed
Unlicensed Requires Authentication

Assessment of the fate of some household micropollutants in urban wastewater treatment plant

  • Laure Pasquini EMAIL logo , Jean-François Munoz , Nicole Rimlinger , Xavier Dauchy , Xavier France , Marie-Noëlle Pons and Tatiana Görner
Published/Copyright: March 16, 2013
Become an author with De Gruyter Brill

Abstract

Everyday domestic activity is a significant source of water pollution. The presence of six household micropollutants in an urban wastewater treatment plant (WWTP) was assessed in wastewater and sludge. A multi-target analytical method was developed for the quantification of ibuprofen, erythromycin, ofloxacin, 4-nonylphenol, 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan), and sucralose. The micropollutants were extracted from the liquid and solid phases and their concentrations were determined by LC-MS/MS. The efficiency of micropollutants’ removal within a conventional activated sludge process was assessed. From 50 % to 90 % of ibuprofen and erythromycin was removed from the wastewater liquid phase. Their removal can be attributed to biological degradation as they were not found adsorbed on the outlet sludge. Ofloxacin and triclosan were removed from the liquid phase with similar efficiencies; however, they were adsorbed on the sludge, so it was not possible to determine their removal mechanism (whether biodegradation or displacement to solid phase/sequestration). Sucralose was not removed from wastewater (3 μg L−1 in inlet and outlet liquid phase) and not adsorbed on the sludge. 4-Nonylphenol concentrations were sometimes higher in the WWTP outlet water; this may relate to the degradation of alkylphenol ethoxylates in the wastewater treatment process. 4-Nonylphenol was always present in the outlet sludge.

[1] Balch, G., & Metcalfe, C. (2006). Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonylphenol ethoxylates and their degradation products. Chemosphere, 62, 1214–1223. DOI: 10.1016/j.chemosphere.2005.02.100. http://dx.doi.org/10.1016/j.chemosphere.2005.02.10010.1016/j.chemosphere.2005.02.100Search in Google Scholar

[2] Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265. DOI: 10.1016/j.copbio.2008.05.006. http://dx.doi.org/10.1016/j.copbio.2008.05.00610.1016/j.copbio.2008.05.006Search in Google Scholar

[3] Barbosa, J., Bergés, R., Toro, I., & Sanz-Nebot, V. (1997). Protonation equilibria of quinolone antibacterials in acetonitrilewater mobile phases used in LC. Talanta, 44, 1271–1283. DOI: 10.1016/s0039-9140(96)02188-1. http://dx.doi.org/10.1016/S0039-9140(96)02188-110.1016/S0039-9140(96)02188-1Search in Google Scholar

[4] Bhandari, A., Surampalli, R. Y., Adams, C. D., Champagne, P., Ong, S. K., Tyagi, R. D., & Zhang, T. C (2009). Contaminants of emerging environmental concern. Reston, VA, USA: American Society of Civil Engineers. 10.1061/9780784410141Search in Google Scholar

[5] Brorström-Lundén, E., Svenson, A., Viktor, T., Woldegiorgis, A., Remberger, M., & Kaj, L. (2008). Measurement of surcalose in the Swedish screening program 2007. Stockholm, Sweden: Swedish Environmental Research Institute. Search in Google Scholar

[6] Brown, J. N., Paxéus, N., Förlin, L., & Larsson, D. G. J. (2007). Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environmental Toxicology and Pharmacology, 24, 267–274. DOI: 10.1016/j.etap.2007.06.005. http://dx.doi.org/10.1016/j.etap.2007.06.00510.1016/j.etap.2007.06.005Search in Google Scholar PubMed

[7] Cha, J. M., Yang, S., & Carlson, K. H. (2006). Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. Journal of Chromatography A, 1115, 46–57. DOI: 10.1016/j.chroma.2006.02.086. http://dx.doi.org/10.1016/j.chroma.2006.02.08610.1016/j.chroma.2006.02.086Search in Google Scholar PubMed

[8] Clarke, B. O., & Smith, S. R. (2011). Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37, 226–247. DOI: 10.1016/j.envint.2010.06.004. http://dx.doi.org/10.1016/j.envint.2010.06.00410.1016/j.envint.2010.06.004Search in Google Scholar PubMed

[9] DiFrancesco, A. M., Chiu, P. C., Standley, L. J., Allen, H. E., & Salvito, D. T. (2004). Dissipation of fragrance materials in sludge-amended soils. Environmental Science & Technology, 38, 194–201. DOI: 10.1021/es034618v. http://dx.doi.org/10.1021/es034618v10.1021/es034618vSearch in Google Scholar PubMed

[10] Environmental Protection Agency (1993). Method 410.4. The determination of chemical oxygen demand by semi-automated colorimetry. EPA-600/4-79-020. Cinncinaty, OH, USA. Search in Google Scholar

[11] Environmental Protection Agency (2007). Method 1694. Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. EPA-821-R-08-002. Cinncinaty, OH, USA. Search in Google Scholar

[12] Environmental Protection Agency (2008). Reregistration eligibility decision for triclosan. EPA 739-RO-8009. Cinncinaty, OH, USA. Search in Google Scholar

[13] EU Parliament (2008). Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing. Official Journal of the European Union, L 348, 84–97. Search in Google Scholar

[14] Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159. DOI: 10.1016/j.aquatox.2005.09.009. http://dx.doi.org/10.1016/j.aquatox.2005.09.00910.1016/j.aquatox.2005.09.009Search in Google Scholar PubMed

[15] Göbel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 39, 3981–3989. DOI: 10.1021/es048550a. http://dx.doi.org/10.1021/es048550a10.1021/es048550aSearch in Google Scholar PubMed

[16] Grice, H. C., & Goldsmith, L. A. (2000). Sucralose-an overview of the toxicity data. Food and Chemical Toxicology, 38 (Supplement 2), S1–S6. DOI: 10.1016/s0278-6915(00)00023-5. http://dx.doi.org/10.1016/S0278-6915(00)00023-510.1016/S0278-6915(00)00023-5Search in Google Scholar

[17] Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y., & Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67, 167–179. DOI: 10.1016/j.aquatox.2003.12.005. http://dx.doi.org/10.1016/j.aquatox.2003.12.00510.1016/j.aquatox.2003.12.005Search in Google Scholar

[18] Jahnke, A., Gandrass, J., & Ruck, W. (2004). Simultaneous determination of alkylphenol ethoxylates and their biotransformation products by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1035, 115–122. DOI: 10.1016/j.chroma.2004.02.060. http://dx.doi.org/10.1016/j.chroma.2004.02.06010.1016/j.chroma.2004.02.060Search in Google Scholar

[19] Jenner, M. R., & Smithson, A. (1989). Physicochemical properties of the sweetener sucralose. Journal of Food Science, 54, 1646–1649. DOI: 10.1111/j.1365-2621.1989.tb05179.x. http://dx.doi.org/10.1111/j.1365-2621.1989.tb05179.x10.1111/j.1365-2621.1989.tb05179.xSearch in Google Scholar

[20] Kümmerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — A review. Chemosphere, 45, 957–969. DOI: 10.1016/s0045-6535(01)00144-8. http://dx.doi.org/10.1016/S0045-6535(01)00144-810.1016/S0045-6535(01)00144-8Search in Google Scholar

[21] Le ministre d’Etat, ministre de l’écologie (2007). Arręté du 22 juin 2007 relatif à la collecte, au transport et au traitement des eaux usées des agglomérations d’assainissement ainsi qu’à la surveillance de leur fonctionnement et de leur efficacité, et aux dispositifs d’assainissement non collectifs recevant une chrage brute de pollution organique supérieure à 1,2 kg/j de DBO5. NOR: DEVO0754085A. Paris, France. (in French) Search in Google Scholar

[22] Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473. DOI: 10.1021/es903490h. http://dx.doi.org/10.1021/es903490h10.1021/es903490hSearch in Google Scholar PubMed

[23] Lillenberg, M., Yurchenko, S., Kipper, K., Herodes, K., Pihl, V., Sepp, K., Löhmus, R., & Nei, L. (2009). Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. Journal of Chromatography A, 1216, 5949–5954. DOI: 10.1016/j.chroma.2009.06.029. http://dx.doi.org/10.1016/j.chroma.2009.06.02910.1016/j.chroma.2009.06.029Search in Google Scholar PubMed

[24] Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M., & Andersson, B. A. V. (2006). Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environmental Science & Technology, 40, 1042–1048. DOI: 10.1021/es0516211. http://dx.doi.org/10.1021/es051621110.1021/es0516211Search in Google Scholar PubMed

[25] Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental Science & Technology, 36, 2322–2329. DOI: 10.1021/es0114254. http://dx.doi.org/10.1021/es011425410.1021/es0114254Search in Google Scholar PubMed

[26] Liu, F., Ying, G. G., Yang, L. H., & Zhou, Q. X. (2009). Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicology and Environmental Safety, 72, 86–92. DOI: 10.1016/j.ecoenv.2008.06.009. http://dx.doi.org/10.1016/j.ecoenv.2008.06.00910.1016/j.ecoenv.2008.06.009Search in Google Scholar PubMed

[27] Loos, R., Hanke, G., Umlauf, G., & Eisenreich, S. J. (2007). LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 66, 690–699. DOI: 10.1016/j.chemosphere.2006.07.060. http://dx.doi.org/10.1016/j.chemosphere.2006.07.06010.1016/j.chemosphere.2006.07.060Search in Google Scholar

[28] Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution, 110, 375–391. DOI: 10.1016/s0269-7491(00)00162-7. http://dx.doi.org/10.1016/S0269-7491(00)00162-710.1016/S0269-7491(00)00162-7Search in Google Scholar

[29] McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi, S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P., & Vu, C. B. (1997). Quantitative structure-activity relationships among macrolide antibacterial agents: In vitro and in vivo potency against Pasteurella multocida. Journal of Medicinal Chemistry, 40, 1340–1346. DOI: 10.1021/jm960436i. http://dx.doi.org/10.1021/jm960436i10.1021/jm960436iSearch in Google Scholar PubMed

[30] Meesters, R. J. W., & Schröder, H. F. (2002). Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge. Analytical Chemistry, 74, 3566–3574. DOI: 10.1021/ac011258q. http://dx.doi.org/10.1021/ac011258q10.1021/ac011258qSearch in Google Scholar PubMed

[31] Picó, Y., & Andreu, V. (2007). Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 387, 1287–1299. DOI: 10.1007/s00216-006-0843-1. http://dx.doi.org/10.1007/s00216-006-0843-110.1007/s00216-006-0843-1Search in Google Scholar PubMed

[32] Qiang, Z., & Adams, C. (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 38, 2874–2890. DOI: 10.1016/j.watres.2004.03.017. http://dx.doi.org/10.1016/j.watres.2004.03.01710.1016/j.watres.2004.03.017Search in Google Scholar PubMed

[33] Radjenović, J., Petrović, M., & Barceló, D. (2009a). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43, 831–841. DOI: 10.1016/j.watres.2008.11.043. http://dx.doi.org/10.1016/j.watres.2008.11.04310.1016/j.watres.2008.11.043Search in Google Scholar PubMed

[34] Radjenović, J., Jelić, A., Petrović, M., & Barceló, D. (2009b). Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analytical and Bioanalytical Chemistry, 393, 1685–1695. DOI: 10.1007/s00216-009-2604-4. http://dx.doi.org/10.1007/s00216-009-2604-410.1007/s00216-009-2604-4Search in Google Scholar PubMed

[35] Richardson, S. D. (2010). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 82, 4742–4774. DOI: 10.1021/ac101102d. http://dx.doi.org/10.1021/ac101102d10.1021/ac101102dSearch in Google Scholar PubMed

[36] Ruel, S. M., Choubert, J. M., Esperanza, M., Miège, C., Madrigal, P. N., Budzinski, H., Le Ménach, K., Lazarova, M., & Coquery, M. (2011). On-site evaluation of the removal of 100 micro-pollutants through advanced wastewater treatment processes for reuse applications. Water Science and Technology, 63, 2486–2497. DOI: 10.2166/wst.2011.470. http://dx.doi.org/10.2166/wst.2011.47010.2166/wst.2011.470Search in Google Scholar PubMed

[37] Scheurer, M., Brauch, H. J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Analytical and Bioanalytical Chemistry, 394, 1585–1594. DOI: 10.1007/s00216-009-2881-y. http://dx.doi.org/10.1007/s00216-009-2881-y10.1007/s00216-009-2881-ySearch in Google Scholar

[38] Singer, H., Müller, S., Tixier, C., & Pillonel, L. (2002). Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environmental Science & Technology, 36, 4998–5004. DOI: 10.1021/es025750i. http://dx.doi.org/10.1021/es025750i10.1021/es025750iSearch in Google Scholar

[39] Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34, 1033–1049. DOI: 10.1016/j.envint.2008.01.004. http://dx.doi.org/10.1016/j.envint.2008.01.00410.1016/j.envint.2008.01.004Search in Google Scholar

[40] Stephenson, B. C., Rangel-Yagui, C. O., Pessoa, A., Jr., Tavares, L. C., Beers, K., & Blankschtein, D. (2006). Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir, 22, 1514–1525. DOI: 10.1021/la052530k. http://dx.doi.org/10.1021/la052530k10.1021/la052530kSearch in Google Scholar

[41] Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten Lützhøft, H. C., & Halling-Sørensen, B. (2000). Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 40, 783–793. DOI: 10.1016/s0045-6535(99)00453-1. http://dx.doi.org/10.1016/S0045-6535(99)00453-110.1016/S0045-6535(99)00453-1Search in Google Scholar

[42] Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224. DOI: 10.1016/j.watres.2010.02.040. http://dx.doi.org/10.1016/j.watres.2010.02.04010.1016/j.watres.2010.02.040Search in Google Scholar PubMed

[43] Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science & Technology, 35, 3397–3406. DOI: 10.1021/es0003021. http://dx.doi.org/10.1021/es000302110.1021/es0003021Search in Google Scholar PubMed

[44] Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A. F., & Viana, M. T. (2005). Nonylphenol, an integrated vision of a pollutant. Applied Ecology and Environmental Research, 4, 1–25. Search in Google Scholar

[45] Vega Morales, T., Torres Padrón, M. E., Sosa Ferrera, Z., & Santana Rodríguez, J. J. (2009). Determination of alkylphenol ethoxylates and their degradation products in liquid and solid samples. Tr-Ac Trends in Analytical Chemistry, 28, 1186–1200. DOI: 10.1016/j.trac.2009.07.011. http://dx.doi.org/10.1016/j.trac.2009.07.01110.1016/j.trac.2009.07.011Search in Google Scholar

[46] Völgyi, G., Ruiz, R., Box, K., Comer, J., Bosch, E., & Takács-Novák, K. (2007). Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: Validation study in a new cosolvent system. Analytica Chimica Acta, 583, 418–428. DOI: 10.1016/j.aca.2006.10.015. http://dx.doi.org/10.1016/j.aca.2006.10.01510.1016/j.aca.2006.10.015Search in Google Scholar PubMed

Published Online: 2013-3-16
Published in Print: 2013-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0339-3/html?lang=en
Scroll to top button