Startseite Preparation of aluminium ammonium calcium phosphates using microwave radiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of aluminium ammonium calcium phosphates using microwave radiation

  • Kinga Łuczka EMAIL logo , Daniel Sibera , Aleksandra Smorowska und Barbara Grzmil
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Microwave radiation was used in the acquisition of aluminium ammonium calcium phosphates. The substrates such as CaCO3, H3PO4, aqueous ammonia were reagent grade, whereas Al(OH)3 was prepared afresh. The influence of process parameters (pH 6 ± 2, molar ratios of Al3+: Ca2+: PO43− in the substrates, respectively 0.31: 0.62: 1; 0.5: 0.5: 1; 0.72: 0.36: 1) on the phase composition and the product properties was determined. Statistical software STATISTICA 10 was used for planning and evaluation of the experiments. The process parameters making it possible to acquire the material with the anticipated physicochemical properties were determined based on statistical evaluation of the planned research by the plan fractional factorial design at three levels 3(k−p). The phase composition of the samples was studied using XRD analysis. The specific surface area was calculated using the BET method and the particle size was determined by LSM. Materials with a molar ratio of Al3+: Ca2+ and Al3+: NH4+ in the range of 0.07–0.76 and 0.75–3.4, respectively, with an absorption oil number of 36–56 g per 100 g, S BET within 8.2–73 m2 g−1, and particle size in the range of 156–252 nm were obtained.

[1] Amirudin, A., Barreau, C., Hellouin, R., & Thierry, D. (1995). Evaluation of anti-corrosive pigments by pigment extract studies, atmospheric exposure and electrochemical impedance spectroscopy. Progress in Organic Coatings, 25, 339–355. DOI: 10.1016/0300-9440(94)00546-d. http://dx.doi.org/10.1016/0300-9440(94)00546-D10.1016/0300-9440(94)00546-DSuche in Google Scholar

[2] Beppu, M. M., de Oliveira Lima, E. C., & Galembeck, F. (1996). Aluminum phosphate particles containing closed pores: Preparation, characterization, and use as a white pigment. Journal of Colloid and Interface Science, 178, 93–103. DOI: 10.1006/jcis.1996.0097. http://dx.doi.org/10.1006/jcis.1996.009710.1006/jcis.1996.0097Suche in Google Scholar

[3] Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: Design, innovation, and discovery. Hoboken, NJ, USA: Wiley-Interscience. Suche in Google Scholar

[4] Burrell, L. S., Johnston, C. T., Schulze, D., Klein, J., White, J. L., & Hem, S. L. (2000). Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part II: physicochemical properties. Vaccine, 19, 282–287. DOI: 10.1016/s0264-410x(00)00162-6. http://dx.doi.org/10.1016/S0264-410X(00)00162-610.1016/S0264-410X(00)00162-6Suche in Google Scholar

[5] Chico, B., Simancas, J., Vega, J. M., Granizo, N., Díaz, I., de la Fuente, D., & Morcillo, M. (2008). Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments. Progress in Organic Coatings, 61, 283–290. DOI: 10.1016/j.porgcoat.2007.07.033. http://dx.doi.org/10.1016/j.porgcoat.2007.07.03310.1016/j.porgcoat.2007.07.033Suche in Google Scholar

[6] Ciba, J. (1998). Poradnik chemika analityka. Warszawa, Poland: WNT. (in Polish) Suche in Google Scholar

[7] Deyá, C., Blustein, G., del Amo, B., & Romagnoli, R. (2010). Evaluation of eco-friendly anticorrosive pigments for paints in service conditions. Progress in Organic Coatings, 69, 1–6. DOI: 10.1016/j.porgcoat.2010.03.011. http://dx.doi.org/10.1016/j.porgcoat.2010.03.01110.1016/j.porgcoat.2010.03.011Suche in Google Scholar

[8] Głuszko, M. (2008). Problems of anticorrosion protection of steel structures and electro energetic equipment exploited in atmospheric conditions. Prace Instytutu Elektrotechniki, 235, 1–173. (in Polish) Suche in Google Scholar

[9] House, W. A. (1999). The physico-chemical conditions for the precipitation of phosphate with calcium. Environmental Technology, 20, 727–733. DOI: 10.1080/09593332008616867. http://dx.doi.org/10.1080/0959333200861686710.1080/09593332008616867Suche in Google Scholar

[10] Kic, B., Grzmil, B., & Lubkowski, K. (2009). Otrzymywanie nanokrystalicznego fosforanu glinu jako antykorozyjnego pigmentu. Przemysł Chemiczny, 88, 468–471. (in Polish) Suche in Google Scholar

[11] Lagno, F., & Demopoulos, G. P. (2005). Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4-H3), by controlled reactive crystallization in sulfate media. Industrial & Engineering Chemistry Research, 44, 8033–8038. DOI: 10.1021/ie0505559. http://dx.doi.org/10.1021/ie050555910.1021/ie0505559Suche in Google Scholar

[12] Liu, G., Jia, M., Zhou, Z., Wang, L., Zhang, W., & Jiang, D. (2006). Synthesis and pore formation study of amorphous mesoporous aluminophosphates in the presence of citric acid. Journal of Colloid and Interface Science, 302, 278–286. DOI: 10.1016/j.jcis.2006.06.026. http://dx.doi.org/10.1016/j.jcis.2006.06.02610.1016/j.jcis.2006.06.026Suche in Google Scholar

[13] Mastuda, T., Ogawa, O., & Taki, T. (2010). US Patent No. 7,828,884. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[14] Minczewski, J., & Marczenko, Z. (2005). Chemia analityczna. Warszawa, Poland: PWN. (in Polish) Suche in Google Scholar

[15] Mošner, P., Kalendová, A., & Koudelka, L. (2000). Anticorrosion properties of SrO-ZnO-B2O3-P2O5 pigments. Dyes and Pigments, 45, 29–34. DOI: 10.1016/s0143-7208(00)00007-3. http://dx.doi.org/10.1016/S0143-7208(00)00007-310.1016/S0143-7208(00)00007-3Suche in Google Scholar

[16] Müller, G., Bódis, I., Eder-Mirth, G., Kornatowski, J., & Lercher, J. A. (1997). In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals. Journal of Molecular Structure, 410–411, 173–178. DOI: 10.1016/s0022-2860(96)09578-6. http://dx.doi.org/10.1016/S0022-2860(96)09578-610.1016/S0022-2860(96)09578-6Suche in Google Scholar

[17] Nakano, J., Murakami, M., & Okuda, M. (1987). Aluminium triphosphate-salt spray studies. Polymers Paint Colour Journal, 177, 642–645. Suche in Google Scholar

[18] Park, J. H., Lee, G. D., Nishikata, A., & Tsuru, T. (2002). Anticorrosive behavior of hydroxyapatite as an environmentally friendly pigment. Corrosion Science, 44, 1087–1095. DOI: 10.1016/s0010-938x(01)00118-4. http://dx.doi.org/10.1016/S0010-938X(01)00118-410.1016/S0010-938X(01)00118-4Suche in Google Scholar

[19] Polish Committee for Standardization (1999). General methods of test for pigments and extenders — Part 5: Determination of oil absorption value. PN EN ISO 787-5:1995. Warsaw, Poland. Suche in Google Scholar

[20] Rinella, J. V., White, J. L., & Hem, S. L. (1995). Effect of anions on model aluminum-adjuvant-containing vaccines. Journal of Colloid and Interface Science, 172, 121–130. DOI: 10.1006/jcis.1995.1233. http://dx.doi.org/10.1006/jcis.1995.123310.1006/jcis.1995.1233Suche in Google Scholar

[21] Rosseto, R., dos Santos, á. C. M. A., & Galembeck, F. (2006). Hydrous non-crystalline phosphates: structure, function and a new white pigment. Journal of the Brazilian Chemical Society, 17, 1465–1472. DOI: 10.1590/s0103-50532006000800002. http://dx.doi.org/10.1590/S0103-5053200600080000210.1590/S0103-50532006000800002Suche in Google Scholar

[22] Sastri, V. S. (2011). Green corrosion inhibitors: Theory and practice. Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/978111801543810.1002/9781118015438Suche in Google Scholar

[23] Socrates, G. (1980). Infrared characteristic group frequencies. Uxbridge, UK: Wiley. Suche in Google Scholar

[24] Takahashi, M. (1984). Characteristic and applications of aluminium triphosphate as special cheemical. Polymers Paint Colour Journal, 174, 281–284. Suche in Google Scholar

[25] Valente Nabais, J. M., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Menéndez, J. A. (2004). Preparation and modification of activated carbon fibres by microwave heating. Carbon, 42, 1315–1320. DOI: 10.1016/j.carbon.2004.01.033. http://dx.doi.org/10.1016/j.carbon.2004.01.03310.1016/j.carbon.2004.01.033Suche in Google Scholar

[26] Valsami-Jones, E. (2001). Calcium phosphate precipitation. Scope Newsletter, 41, 8–15. Suche in Google Scholar

[27] Van Wazer, J. R. (1958). Phosphorus and its compounds. New York, NY, USA: Interscience Publishers. Suche in Google Scholar

[28] Wallton, A. G., Boclin, W. J., Furedi, H., & Schwartz, A. (1967). Nucleation of calcium phosphate from solution. Canadian Journal of Chemistry, 45, 2695–2701. DOI: 10.1139/v67-439. http://dx.doi.org/10.1139/v67-43910.1139/v67-439Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0326-8/pdf?lang=de
Button zum nach oben scrollen