Abstract
The biocatalytic production of pravastatin from compactin by hydroxylation has found many applications in health care and pharmaceuticals. Actinomadura macra, Actinomadura madurae, and Actinomadura livida can efficiently bioconvert compactin to pravastatin. The fermentation broth (Penicillium citrinum fermented media) harvested on the eighth day contained 388.90 mg L−1 of compactin and an undetectable level of mycotoxin (citrinin). Bioconversion by A. macra was highest (87 %) in the yeast extract-amended medium. The anti-actinomadura effects of citrinin reduce the bioconversion capacity of Actinomadura. The in situ hydroxylation of compactin produced by P. citrinum represents a preferable alternative for the use of purified compactin, as a way to reduce cost and time processing.
[1] Ahmad, A., Mujeeb, M., & Panda, B. P. (2010). An HPTLC method for the simultaneous analysis of compactin and citrinin in Penicillium citrinum fermentation broth. Journal of Planar Chromatography — Modern TLC, 23, 282–285. DOI: 10.1556/jpc.23.2010.4.8. http://dx.doi.org/10.1556/JPC.23.2010.4.810.1556/JPC.23.2010.4.8Search in Google Scholar
[2] Ahmad, A., Mujeeb, M., & Panda, B. P. (2011a). Production and optimization of mevastatin by Penicillium citrinum MTCC 1256 and effect of citrinin on growth of Actinomadura strains. Latin American Journal of Pharmacy, 30, 496–501. Search in Google Scholar
[3] Ahmad, A., Panda, B. P., & Mujeeb, M. (2011b). A validated stability-indicating method for simultaneous analysis of mevastatin and pravastatin in fermentation broth during bioconversion by Actinomadura macra. Acta Chromatographica, 23, 121–131. DOI: 10.1556/achrom.23.2011.1.8. http://dx.doi.org/10.1556/AChrom.23.2011.1.810.1556/AChrom.23.2011.1.8Search in Google Scholar
[4] Barrios-González, J., & Miranda, R. U. (2010). Biotechnological production and applications of statins. Applied Microbiology and Biotechnology, 85, 869–883. DOI: 10.1007/s00253-009-2239-6. http://dx.doi.org/10.1007/s00253-009-2239-610.1007/s00253-009-2239-6Search in Google Scholar
[5] Chakravarti, R., & Sahai, V. (2002a). A chemically defined medium for production of compactin by Penicillium citrinum. Biotechnology Letters, 24, 527–530. DOI: 10.1023/a:1014895532142. http://dx.doi.org/10.1023/A:101489553214210.1023/A:1014895532142Search in Google Scholar
[6] Chakravarti, R., & Sahai, V. (2002b). Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochemistry, 38, 481–486. DOI: 10.1016/s0032-9592(02)00 138-3. http://dx.doi.org/10.1016/S0032-9592(02)00138-310.1016/S0032-9592(02)00138-3Search in Google Scholar
[7] Chan, W. H. (2008). Effects of citrinin on maturation of mouse oocytes, fertilization, and fetal development in vitro and in vivo. Toxicology Letters, 180, 28–32. DOI: 10.1016/j.toxlet.2008.05.011. http://dx.doi.org/10.1016/j.toxlet.2008.05.01110.1016/j.toxlet.2008.05.011Search in Google Scholar PubMed
[8] Chen, C. H., Hu, H. Y., Cho, Y. C., & Hsu, W. H. (2006). Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin. Current Microbiology, 53, 108–112. DOI: 10.1007/s00284-005-0276-7. http://dx.doi.org/10.1007/s00284-005-0276-710.1007/s00284-005-0276-7Search in Google Scholar PubMed
[9] Hosobuchi, M., Kurosawa, K., & Yoshikawa, H. (1993). Application of computer to monitoring and control of fermentation process: Microbial conversion of ML-236B Na to pravastatin. Biotechnology and Bioengineering, 42, 815–820. DOI: 10.1002/bit.260420705. http://dx.doi.org/10.1002/bit.26042070510.1002/bit.260420705Search in Google Scholar PubMed
[10] Jackson, L. K., & Ciegler, A. (1978). Production and analysis of citrinin in corn. Applied and Environmental Microbiology, 36, 408–411. 10.1128/aem.36.3.408-411.1978Search in Google Scholar PubMed PubMed Central
[11] Lin, C. L., Tang, Y. L., & Lin, S. M. (2011). Efficient bioconversion of compactin to pravastatin by the quinolinedegrading microorganism Pseudonocardia carboxydivorans isolated from petroleum-contaminated soil. Bioresource Technology, 102, 10187–10193. DOI: 10.1016/j.biortech.2011.09.029. http://dx.doi.org/10.1016/j.biortech.2011.09.02910.1016/j.biortech.2011.09.029Search in Google Scholar PubMed
[12] Park, J. W., Lee, J. K., Kwon, T. J., Yi, D. H., Kim, Y. J., Moon, S. H., Suh, H. H., Kang, S. M., & Park, Y. I. (2003). Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnology Letters, 25, 1827–1831. DOI: 10.1023/a:1026281914301. http://dx.doi.org/10.1023/A:102628191430110.1023/A:1026281914301Search in Google Scholar
[13] Peng, Y. L., & Demain, A. L. (1998). A new hydroxylase system in Actinomadura sp cells converting compactin to pravastatin. Journal of Industrial Microbiology & Biotechnology, 20, 373–375. DOI: 10.1038/sj.jim.2900539. http://dx.doi.org/10.1038/sj.jim.290053910.1038/sj.jim.2900539Search in Google Scholar
[14] Peng, Y. L., & Demain, A. L. (2000). Bioconversion of compactin to pravastatin by Actinomadura sp. ATCC 55678. Journal of Molecular Catalysis B: Enzymatic, 10, 151–156. DOI: 10.1016/s1381-1177(00)00123-5. http://dx.doi.org/10.1016/S1381-1177(00)00123-510.1016/S1381-1177(00)00123-5Search in Google Scholar
[15] Shepherd, J., Cobbe, S. M., Ford, I., Isles, C. G., Lorimer, A. R., Macferlane, P. W., McKillop, J. H., & Packard, C. J. (1995). Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. New England Journal of Medicine, 333, 1301–1309. DOI: 10.1056/nejm199511163332001. http://dx.doi.org/10.1056/NEJM19951116333200110.1056/NEJM199511163332001Search in Google Scholar
[16] Watanabe, I., Nara, F., & Serizawa, N. (1995). Cloning, characterization and expression of the gene encoding cytochrome P-450sca-in2 from Streptomyces carbophilus involved in production of pravastatin, a specific HMG-CoA reductase inhibitor. Gene, 163, 81–85. DOI: 10.1016/0378-1119(95)00394-l. http://dx.doi.org/10.1016/0378-1119(95)00394-L10.1016/0378-1119(95)00394-LSearch in Google Scholar
[17] Yamashita, H., Tsubokawa, S., & Endo, A., (1985). Microbial hydroxylation of compactin (ML-236B) and monacolin K. Journal of Antibiotics, 38, 605–609. http://dx.doi.org/10.7164/antibiotics.38.60510.7164/antibiotics.38.605Search in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Enzymatic synthesis of kojic acid esters and their potential industrial applications
- KI-catalysed synthesis of 4-methylcatechol dimethylacetate and fragrant compound Calone 1951®
- Sequestration of supercritical CO2 by mercury oxide
- Assessment of the fate of some household micropollutants in urban wastewater treatment plant
- Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide
- Mechanism of α-acetyl-γ-butyrolactone synthesis
- Spirocyclisation of phytoalexin 1-methoxybrassinin in the presence of Grignard reagents
- Synthesis of new aryl(hetaryl)-substituted tandospirone analogues with potential anxiolytic activity via reductive Heck type hydroarylations
- Methyl-2-arylidene hydrazinecarbodithioates: synthesis and biological activity
- Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity
- In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum
- Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China
Articles in the same Issue
- Enzymatic synthesis of kojic acid esters and their potential industrial applications
- KI-catalysed synthesis of 4-methylcatechol dimethylacetate and fragrant compound Calone 1951®
- Sequestration of supercritical CO2 by mercury oxide
- Assessment of the fate of some household micropollutants in urban wastewater treatment plant
- Synthesis in water-free DMF, characterization, electrical, and gas sensing properties of bis[2-(2-aminoethylamino)ethanol]copper(II) dibromide
- Mechanism of α-acetyl-γ-butyrolactone synthesis
- Spirocyclisation of phytoalexin 1-methoxybrassinin in the presence of Grignard reagents
- Synthesis of new aryl(hetaryl)-substituted tandospirone analogues with potential anxiolytic activity via reductive Heck type hydroarylations
- Methyl-2-arylidene hydrazinecarbodithioates: synthesis and biological activity
- Degradation products of proguanil — 4-chloroaniline and related components with regard to genotoxicity
- In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum
- Mineral element content in prized matsutake mushroom (Tricholoma matsutake) collected in China