Startseite Preparation of sterically stabilized gold nanoparticles for plasmonic applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation of sterically stabilized gold nanoparticles for plasmonic applications

  • Monika Benkovičová EMAIL logo , Karol Végsö , Peter Šiffalovič , Matej Jergel , Eva Majková , Štefan Luby und Alexander Šatka
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Plasmonic nanoparticles such as those of gold or silver have been recently investigated as a possible way to improve light absorption in thin film solar cells. Here, a simple method for the preparation of spherical plasmonic gold nanoparticles in the form of a colloidal solution is presented. The nanoparticle diameter is controlled in the range from several nm to tens of nm depending on the synthesis parameters with the size dispersion down to 14 %. The synthesis is based on thermal decomposition and reduction of the chloroauric acid in the presence of a stabilizing capping agent (surfactant) that is very slowly injected into the hot solvent. The surfactant prevents uncontrolled nanoparticle aggregation during the growth process. The nanoparticle size and shape depend on the type of the stabilizing agent. Surfactants with different lengths of the hydrocarbon chains such as Z-octa-9-decenylamine (oleylamine) with AgNO3 and polyvinylpyrrolidone with AgNO3 were used for the steric stabilization. Hydrodynamic diameter of the gold nanoparticles in the colloidal solution was determined by dynamic light scattering while the size of the nanoparticle metallic core was found by small-angle X-ray scattering. The UV-VIS-NIR spectrophotometer measurements revealed a plasmon resonance absorption in the 500–600 nm range. Self-assembled nanoparticle arrays on a silicon substrate were prepared by drop casting followed by spontaneous evaporation of the solvent and by a modified Langmuir-Blodgett deposition. The degree of perfection of the self-assembled arrays was analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Homogeneous close-packed hexagonal ordering of the nanoparticles stretching over large areas was evidenced. These results document the viability of the proposed nanoparticle synthesis for the preparation of high-quality plasmonic templates for thin film solar cells with enhanced power conversion efficiency, surface enhanced Raman scattering, and other applications.

[1] Chitu, L., Siffalovic, P., Majkova, E., Jergel, M., Vegso, K., Luby, S., Capek, I., Satka, A., Perlich, J., Timmann, A., Roth, S. V., Keckes, J., & Maier, G. A. (2010). Modified Langmuir-Blodgett deposition of nanoparticles — measurement of 2D to 3D ordered arrays. Measurement Science Review, 10, 162–154. DOI: 10.2478/v10048-010-0028-0. http://dx.doi.org/10.2478/v10048-010-0028-010.2478/v10048-010-0028-0Suche in Google Scholar

[2] Esumi, K., Sarashina, S., & Yoshimura, T. (2004). Synthesis of gold nanoparticles from an organometallic compound in supercritical carbon dioxide. Langmuir, 20, 5189–5191. DOI: 10.1021/la049415e. http://dx.doi.org/10.1021/la049415e10.1021/la049415eSuche in Google Scholar

[3] Feng, X., Ma, H., Huang, S., Pan, W., Zhang, X., Tian, F., Gao, C., Cheng, Y., & Luo, J. (2006). Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. The Journal of Physical Chemistry B, 110, 12311–12317. DOI: 10.1021/jp0609885. http://dx.doi.org/10.1021/jp060988510.1021/jp0609885Suche in Google Scholar

[4] Hussain, I., Graham, S., Wang, Z. X., Tan, B., Sherrington, D. C., Rannard, S. P., Cooper, A. I., & Brust, M. (2005). Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. Journal of the American Chemical Society, 127, 16398–16399. DOI: 10.1021/ja055321v. http://dx.doi.org/10.1021/ja055321v10.1021/ja055321vSuche in Google Scholar

[5] Li, X. H., Li, Y. C., Tan, Y. W., Yang, C. H., & Li, Y. F. (2004). Self-Assembly of gold nanoparticles prepared with 3,4-ethylenedioxythiophene as reductant. The Journal of Physical Chemistry B, 108, 5192–5199. DOI: 10.1021/jp0356618. http://dx.doi.org/10.1021/jp035661810.1021/jp0356618Suche in Google Scholar

[6] Ma, L. N., Liu, D. J., & Wang, Z. X. (2010). Synthesis and applications of gold nanoparticle probes. Chinese Journal of Analytical Chemistry, 38, 1–7. DOI: 10.1016/s1872- 2040(09)60013-x. http://dx.doi.org/10.1016/S1872-2040(09)60013-X10.1016/S1872-2040(09)60013-XSuche in Google Scholar

[7] Liu, Q., Guo, M. L., Nie, Z., Yuan, J. B., Tan, J., & Yao, S. Z. (2008). Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir, 24, 1595–1599. DOI: 10.1021/la702978z. http://dx.doi.org/10.1021/la702978z10.1021/la702978zSuche in Google Scholar PubMed

[8] Liu, Y. J., Hao, Q. Z., Smalley, J. S. T., Liou, J., Khoo, I. C., & Huang, T. J. (2010). A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Applied Physics Letters, 97, 091101. DOI: 10.1063/1.3483156. http://dx.doi.org/10.1063/1.348315610.1063/1.3483156Suche in Google Scholar

[9] Mastiholi, B. M., Tangod, V. B., & Raikar, U. S. (2013). Influence of metal nanoparticles on ADS560EI fluorescent laser dye. Optik — International Journal for Light and Electron Optics. 124, 261–264. DOI:10.1016/j.ijleo.2011.11.054. http://dx.doi.org/10.1016/j.ijleo.2011.11.05410.1016/j.ijleo.2011.11.054Suche in Google Scholar

[10] Moon, S. Y., Sekino, T., Kusunose, T., & Tanaka, S. I. (2009). Simple one-step synthesis of water and organic media soluble gold nanoparticles with various shapes and sizes. Journal of Crystal Growth, 311, 651–656. DOI: 10.1016/j.jcrysgro.2008.09.085. http://dx.doi.org/10.1016/j.jcrysgro.2008.09.08510.1016/j.jcrysgro.2008.09.085Suche in Google Scholar

[11] Nakamoto, M., Kashiwagi, Y., & Yamamoto, M. (2005). Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold(I) thiolate in the absence or presence of amines. Inorganica Chimica Acta, 358, 4229–4236. DOI:10.1016/j.ica.2005.03.037. http://dx.doi.org/10.1016/j.ica.2005.03.03710.1016/j.ica.2005.03.037Suche in Google Scholar

[12] Raikar, U. S, Tangod, V. B., Mastiholi, B. M., & Fulari, V. J. (2011). Fluorescence quenching using plasmonic gold nanoparticles. Optics Communications, 284, 4761–4765. DOI:10.1016/j.optcom.2011.05.038. http://dx.doi.org/10.1016/j.optcom.2011.05.03810.1016/j.optcom.2011.05.038Suche in Google Scholar

[13] Selvakannan, P., Mandal, S., Pasricha, R., & Sastry, M. (2004). Hydrophobic, organically dispersible gold nanoparticles of variable shape produced by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules. Journal of Colloid and Interface Science, 279, 124–131. DOI: 10.1016/j.jcis.2004.06.027. http://dx.doi.org/10.1016/j.jcis.2004.06.02710.1016/j.jcis.2004.06.027Suche in Google Scholar PubMed

[14] Siffalovic, P., Vegso, K., Jergel, M., Majkova, E., Keckes, J., Maier, G. A., Cornejo, M., Ziberi, B., Frost, F., Hasse, B., & Wiesmann, J. (2010). Measurement of nanopatterned surfaces by real and reciprocal space techniques. Measurement Science Review, 10, 153–156. DOI: 10.2478/v10048-010-0027-1. http://dx.doi.org/10.2478/v10048-010-0027-110.2478/v10048-010-0027-1Suche in Google Scholar

[15] Wang, L., Wei, G., Guo, C. L., Sun, L. L., Sun, Y. J., Song, Y. G., Yang, T., & Li, Z. (2007). Photochemical synthesis and self-assembly of gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312, 148–153. DOI:10.1016/j.colsurfa.2007.06.043. http://dx.doi.org/10.1016/j.colsurfa.2007.06.04310.1016/j.colsurfa.2007.06.043Suche in Google Scholar

[16] Wiesmann, J., Graf, J., Hoffmann, C., Hembd, A., Michaelsen, C., Yang, N., Cordes, H., He, B., Preckwinkel, U., & Erlacher, K. (2009). X-ray diffractometry with low power microfocus sources — new possibilities in the lab. Particle & Particle Systems Characterization, 26(3), 112–116. DOI: 10.1002/ppsc.200800052. http://dx.doi.org/10.1002/ppsc.20080005210.1002/ppsc.200800052Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0315-y/pdf
Button zum nach oben scrollen