Abstract
The influence of pre-reactor and reactor temperatures on the conversion of 1,3-dichloropropan-2-ol and the selectivity of its transformation to epichlorohydrin in continuous dehydrochlorination for two modes of the reaction product collection was studied. The dehydrochlorination process and mechanism of diglycidyl ether formation are described.
[1] Bell, B. M., Briggs, J. R., Campbell, R. M., Chambers, S. M., Gaarenstroom, P. D., Hippler, J. G., Hook, B. D., Kearns, K., Kenney, J. M., Kruper, W. J., Schreck, D. J., Theriault, C. N., & Wolfe, C. P. (2008). Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean-Soil, Air, Water, 36, 657–661. DOI:10.1002/clen.200800067. http://dx.doi.org/10.1002/clen.20080006710.1002/clen.200800067Suche in Google Scholar
[2] Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D., & Rollin, P. (2001). Original synthesis of linear, branched and cyclic oligoglycerol standards. European Journal of Organic Chemistry, 2001, 875–896. DOI:10.1002/1099-0690(200103)2001:5〈875::AID-EJOC875〉3.0.CO;2-R. http://dx.doi.org/10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-R10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-RSuche in Google Scholar
[3] Czub, P., Bończa-Tomaszewski, Z., Penczek, P., & Pielichowski, J. (2002). Chemia i technologia żywic epoksydowych (pp. 24–25). Warsaw, Poland: WNT. Suche in Google Scholar
[4] Ebner, A. D., Ritter, J. A., Ploehn, H. J., Kochen, R. L., & Navratil, J. D. (1999). New magnetic field-enhanced process for the treatment of aqueous wastes. Separation Science and Technology, 34, 1277–1300. DOI: 10.1080/01496399908951 093. Suche in Google Scholar
[5] Gilbeau, P., & Jestin, B. (2009). WO Patent No. 2009121853 (A1). Geneva, Switzerland: World Intellectual Property Organization. Suche in Google Scholar
[6] Greenspan, F. P., & Gall, R. J. (1956). Epoxy fatty acid ester plasticizers. Preparation and properties. Journal of the American Oil Chemists Society, 33, 391–394. DOI: 10.1007/bf02630763. http://dx.doi.org/10.1007/BF0263076310.1007/BF02630763Suche in Google Scholar
[7] Grzywa, E., & Molenda, J. (2008). Technologia podstawowych syntez organicznych (4th ed.) (Vol. 1, pp. 271–280). Warsaw, Poland: WNT. Suche in Google Scholar
[8] Kamata, K., Sugahara, K., Yonehara, K., Ishimoto, R., & Mizuno, N. (2011). Efficient epoxidation of electron-deficient alkenes with hydrogen peroxide catalyzed by [γ-PW10O38V2 (μ-OH)2]3−. Chemistry — A European Journal, 17, 7549–7559. DOI:10.1002/chem.201101001. http://dx.doi.org/10.1002/chem.20110100110.1002/chem.201101001Suche in Google Scholar
[9] Kim, D. H., Na, S. K., Park, J. S., Yoon, K. J., & Ihm, D. W. (2002). Studies on the preparation of hydrolyzed starch-g-PAN (HSPAN)/PVA blend films-Effect of the reaction with epichlorohydrin. European Polymer Journal, 38, 1199–1204. DOI: 10.1016/s0014-3057(01)00301-9. http://dx.doi.org/10.1016/S0014-3057(01)00301-910.1016/S0014-3057(01)00301-9Suche in Google Scholar
[10] Krafft, P., Gilbeau, P., Gosselin, B., & Claessens, S. (2005). WO Patent No. 2005054167 (A1). Geneva, Switzerland: World Intellectual Property Organization. Suche in Google Scholar
[11] Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15. DOI: 10.1016/s0960-8524(99)00025-5. http://dx.doi.org/10.1016/S0960-8524(99)00025-510.1016/S0960-8524(99)00025-5Suche in Google Scholar
[12] Milchert, E., Krzyżanowska, A., Wołosiak-Hnat, A., & Paździoch, W. (2012). The influence of technological parameters on dehydrochlorination of dichloropropanols. Industrial & Engineering Chemistry Research, 51, 3575–3579. DOI: 10.1021/ie202630n. http://dx.doi.org/10.1021/ie202630n10.1021/ie202630nSuche in Google Scholar
[13] Mohamed, A. S., & Mohamed, M. Z. (2010). Preparation of novel cationic surfactants from epichlorohydrin: their surface properties and biological activities. Journal of Surfactants and Detergents, 13, 159–163. DOI: 10.1007/s11743-009-1141-7. http://dx.doi.org/10.1007/s11743-009-1141-710.1007/s11743-009-1141-7Suche in Google Scholar
[14] Santacesaria, E., Tesser, R., Di Serio, M., Casale, L., & Verde, D. (2010). New process for producing epichlorohydrin via glycerol chlorination. Industrial & Engineering Chemistry Research, 49, 964–970. DOI: 10.1021/ie900650x. http://dx.doi.org/10.1021/ie900650x10.1021/ie900650xSuche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes