Abstract
This work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.
[1] Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., & Zollitsch, W. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 98, 3204–3212 DOI: 10.1016/j.biortech.2006.07.007. http://dx.doi.org/10.1016/j.biortech.2006.07.00710.1016/j.biortech.2006.07.007Suche in Google Scholar PubMed
[2] Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., & Lyberatos, G. (2008). Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology, 99, 110–119. DOI: 10.1016/j.biortech.2006.11.048. http://dx.doi.org/10.1016/j.biortech.2006.11.04810.1016/j.biortech.2006.11.048Suche in Google Scholar PubMed
[3] Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of anaerobic digestion of waste-active sludge. Progress in Energy and Combustion Science, 34, 755–781. DOI: 10.1016/j.pecs.2008.06.002. http://dx.doi.org/10.1016/j.pecs.2008.06.00210.1016/j.pecs.2008.06.002Suche in Google Scholar
[4] Arantes, V., Milagres, A. M. F., Filley, T. R., & Goodell, B. (2011). Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology & Biotechnology, 38, 541–555. DOI: 10.1007/s10295-010-0798-2. http://dx.doi.org/10.1007/s10295-010-0798-210.1007/s10295-010-0798-2Suche in Google Scholar PubMed
[5] Baudel, H. M., Zaror, C., & de Abreu, C. A. M. (2005). Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Industrial Crops and Products, 21, 309–315. DOI: 10.1016/j.indcrop.2004.04.013. http://dx.doi.org/10.1016/j.indcrop.2004.04.01310.1016/j.indcrop.2004.04.013Suche in Google Scholar
[6] Cao, W., Sun, C., Liu, R., Yin, R., & Wu, X. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221. DOI: 10.1016/j.biortech.2012.02.034. http://dx.doi.org/10.1016/j.biortech.2012.02.03410.1016/j.biortech.2012.02.034Suche in Google Scholar PubMed
[7] Cara, C., Ruiz, E., Oliva, J. M., Sáez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99, 1869–1876. DOI: 10.1016/j.biortech.2007.03.037. http://dx.doi.org/10.1016/j.biortech.2007.03.03710.1016/j.biortech.2007.03.037Suche in Google Scholar PubMed
[8] Carballa, M., Manterola, G., Larrea, L., Ternes, T., Omil, F., & Lema, J. M. (2007). Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere, 67, 1444–1452. DOI: 10.1016/j.chemosphere.2006.10.004. http://dx.doi.org/10.1016/j.chemosphere.2006.10.00410.1016/j.chemosphere.2006.10.004Suche in Google Scholar PubMed
[9] da Costa Sousa, L., Chundawat, S. P. S., Balan, V., & Dale, B. E. (2009). ’Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20, 339–347. DOI: 10.1016/j.copbio.2009.05.003. http://dx.doi.org/10.1016/j.copbio.2009.05.00310.1016/j.copbio.2009.05.003Suche in Google Scholar PubMed
[10] Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstock. Biomass and Bioenergy, 26, 389–399. DOI: 10.1016/j.biombioe.2003.08.006. http://dx.doi.org/10.1016/j.biombioe.2003.08.00610.1016/j.biombioe.2003.08.006Suche in Google Scholar
[11] Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. DOI: 10.1016/j.biortech.2008.05.027. http://dx.doi.org/10.1016/j.biortech.2008.05.02710.1016/j.biortech.2008.05.027Suche in Google Scholar
[12] Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729. DOI: 10.1021/ie801542g. http://dx.doi.org/10.1021/ie801542g10.1021/ie801542gSuche in Google Scholar
[13] Kürschner, K., & Hoffer, A. (1931). A new quantitative cellulose determination. Chemiker-Zeitung, 55, 161–163, 182–184. Suche in Google Scholar
[14] Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156, 395–403. DOI: 10.1016/j.cej.2009.10.061. http://dx.doi.org/10.1016/j.cej.2009.10.06110.1016/j.cej.2009.10.061Suche in Google Scholar
[15] McIntosh, S., & Vancov, T. (2010). Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresource Technology, 101, 6718–6727. DOI: 10.1016/j.biortech.2010.03.116. http://dx.doi.org/10.1016/j.biortech.2010.03.11610.1016/j.biortech.2010.03.116Suche in Google Scholar
[16] Michalska, K., Miazek, K., Krzystek, L., & Ledakowicz, S. (2012). Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, 119, 72–78. DOI: 10.1016/j.biortech.2012.05.105. http://dx.doi.org/10.1016/j.biortech.2012.05.10510.1016/j.biortech.2012.05.105Suche in Google Scholar
[17] Michalska, K., & Ledakowicz, S. (2012). Degradation of lignocellulosic structures and the products of their decomposition. Inżynieria i Aparatura Chemiczna, 51, 157–159. Suche in Google Scholar
[18] Michaud, S., Bernet, N., Buffière, P., Roustan, M., & Moletta, R. (2002). Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36, 1385–1391. DOI: 10.1016/s0043-1354(01)00338-4. http://dx.doi.org/10.1016/S0043-1354(01)00338-410.1016/S0043-1354(01)00338-4Suche in Google Scholar
[19] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686. DOI: 10.1016/j.biortech.2004.06.025. http://dx.doi.org/10.1016/j.biortech.2004.06.02510.1016/j.biortech.2004.06.025Suche in Google Scholar PubMed
[20] Piecha-Marasek, M. (1992). Raw metrials for papers industry — pulpwood — chemical analysis. Retrieved June 15, 2012, from http://infostore.saiglobal.com/store/Details.aspx?ProductID=321814 Suche in Google Scholar
[21] Rabelo, S. C., Filho, R. M., & Costa, A. C. (2008). A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Applied Biochemistry and Biotechnology, 144, 87–100. DOI: 10.1007/s12010-007-8086-y. http://dx.doi.org/10.1007/s12010-007-8086-y10.1007/s12010-007-8086-ySuche in Google Scholar PubMed
[22] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16, 144–158. Suche in Google Scholar
[23] Vancov, T., & McIntosh, S. (2012). Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 92, 421–428. DOI: 10.1016/j.apenergy.2011.11.053. http://dx.doi.org/10.1016/j.apenergy.2011.11.05310.1016/j.apenergy.2011.11.053Suche in Google Scholar
[24] Wang, Z., Keshwani, D. R., Redding, A. P., & Cheng, J. J. (2010). Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101, 3583–3585. DOI: 10.1016/j.biortech.2009.12.097. http://dx.doi.org/10.1016/j.biortech.2009.12.09710.1016/j.biortech.2009.12.097Suche in Google Scholar PubMed
[25] Whitfield, M. B., Chinn, M. S., & Veal, M. W. (2012). Processing of materials derived from sweet sorghum for biobased products. Industrial Crops and Products, 37, 362–375. DOI: 10.1016/j.indcrop.2011.12.011. http://dx.doi.org/10.1016/j.indcrop.2011.12.01110.1016/j.indcrop.2011.12.011Suche in Google Scholar
[26] Wu, L., Arakane, M., Ike, M., Wada, M., Takai, T., Gau, M., & Tokuyasu, K. (2011). Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technology, 102, 4793–4799. DOI: 10.1016/j.biortech.2011.01.023. http://dx.doi.org/10.1016/j.biortech.2011.01.02310.1016/j.biortech.2011.01.023Suche in Google Scholar PubMed
[27] Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966. DOI: 10.1016/j.biortech.2005.01.010. http://dx.doi.org/10.1016/j.biortech.2005.01.01010.1016/j.biortech.2005.01.010Suche in Google Scholar PubMed
[28] Xu, F., Shi, Y. C., Wu, X., Theerarattananoon, K., Staggenborg, S., & Wang, D. (2011). Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess and Biosystems Engineering, 34, 485–492. DOI: 10.1007/s00449-010-0492-9. http://dx.doi.org/10.1007/s00449-010-0492-910.1007/s00449-010-0492-9Suche in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes