Startseite Model predictive control-based robust stabilization of a chemical reactor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Model predictive control-based robust stabilization of a chemical reactor

  • Monika Bakošová EMAIL logo , Juraj Oravec und Katarína Matejičková
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper addresses an approach to robust stabilization of chemical continuous stirred tank reactors. State feedback was used for the stabilization and the feedback controller was designed using the robust model-based predictive control algorithm in which the symmetric constraints on input and output variables are taken into account. The known strategy was modified by adding integral action to the controller. Parameters of robust feedback controllers with and without integral action were found as solutions of a constrained optimization problem solved on the infinite prediction horizon. The possibility to stabilize chemical reactors with uncertainty using the robust model-based predictive control has been verified by simulations and compared with the optimal linear quadratic control and the model-based predictive control. The obtained results confirm that the robust model-based predictive control provides better results than other approaches.

[1] Alvarez-Ramirez, J., & Femat, R. (1999). Robust PI stabilization of a class of chemical reactors. Systems & Control Letters, 38, 219–225. DOI: 10.1016/s0167-6911(99)00057-2. http://dx.doi.org/10.1016/S0167-6911(99)00057-210.1016/S0167-6911(99)00057-2Suche in Google Scholar

[2] Bakošová, M., Puna, D., & Mészáros, A. (2006). Control of a continuous-time stirred tank reactor via robust static output feedback. In Proceedings of the 14th IEEE Mediterranean Conference on Control and Automation, June 28–30, 2006 (pp. 1–6). Ancona, Italy: Università Politecnica delle Marche. DOI: 10.1109/MED.2006.328854. 10.1109/MED.2006.328854Suche in Google Scholar

[3] Bakošová, M., Puna, D., Dostál, D., & Závacká, J. (2009). Robust stabilization of a chemical reactor. Chemical Papers, 63, 527–536. DOI: 10.2478/s11696-009-0046-2. http://dx.doi.org/10.2478/s11696-009-0046-210.2478/s11696-009-0046-2Suche in Google Scholar

[4] Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38, 407–427. DOI: 10.1016/s0005-1098(01)00174-1. http://dx.doi.org/10.1016/S0005-1098(01)00174-110.1016/S0005-1098(01)00174-1Suche in Google Scholar

[5] Boyd, S., El-Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA, USA: SIAM. http://dx.doi.org/10.1137/1.978161197077710.1137/1.9781611970777Suche in Google Scholar

[6] Di Ciccio, M. P., Bottini, M., Pepe, P., & Foscolo, P. U. (2011). Observer-based nonlinear control law for a continuous stirred tank reactor with recycle. Chemical Engineering Science, 66, 4780–4797. DOI: 10.1016/j.ces.2011.06.038. http://dx.doi.org/10.1016/j.ces.2011.06.03810.1016/j.ces.2011.06.038Suche in Google Scholar

[7] Ding, B. (2010). Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica, 46, 1517–1523. DOI: 10.1016/j.automatica.2010.06.14. http://dx.doi.org/10.1016/j.automatica.2010.06.014Suche in Google Scholar

[8] Favache, A., & Dochain, D. (2010). Power-shaping control of reaction systems: The CSTR case. Automatica, 46, 1877–1883. DOI: 10.1016/j.automatica.2010.07.011. http://dx.doi.org/10.1016/j.automatica.2010.07.01110.1016/j.automatica.2010.07.011Suche in Google Scholar

[9] Flores-Tlacuahuac, A., Alvarez, J., Saldívar-Guerra, E., & Oaxaca, G. (2005). Optimal transition and robust control design for exothermic continuous reactors. AIChE Journal, 51, 895–908. DOI: 10.1002/aic.10345. http://dx.doi.org/10.1002/aic.1034510.1002/aic.10345Suche in Google Scholar

[10] Gerhard, J., Mönningmann, M., & Marquardt, W. (2004). Robust stable nonlinear control and design of a CSTR in a large operating range. In Proceedings of the 7th International Symposium on Dynamics and Control of Process Systems, July 5–7, 2004 (pp. 92-1–92-6). Cambridge, MA, USA: International Federation of Automatic Control. Suche in Google Scholar

[11] Graichen, K., Hagenmeyer, V., & Zeitz, M. (2009). Design of adaptive feedforward control under input constraints for a benchmark CSTR based on a BVP solver. Computers & Chemical Engineering, 33, 473–483. DOI: 10.1016/j.compchemeng.2008.11.002. http://dx.doi.org/10.1016/j.compchemeng.2008.11.00210.1016/j.compchemeng.2008.11.002Suche in Google Scholar

[12] Hoag, H., Couenne, F., Jallut, C., & Le Gorrec, Y. (2011). The port Hamiltonian approach to modelling and control of Continuous Stirred Tank Reactors. Journal of Process Control, 21, 1449–1458, DOI: 10.1016/j.jprocont.2011.06.014. http://dx.doi.org/10.1016/j.jprocont.2011.06.01410.1016/j.jprocont.2011.06.014Suche in Google Scholar

[13] Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32, 1361–1379. DOI: 10.1016/0005-1098(96)00063-5. http://dx.doi.org/10.1016/0005-1098(96)00063-510.1016/0005-1098(96)00063-5Suche in Google Scholar

[14] Kvasnica, M., Herceg, M., Čirka, Ľ., & Fikar, M. (2010). Model predictive control of a CSTR: A hybrid modeling approach. Chemical Papers, 64, 301–309. DOI: 10.2478/s11696-010-0008-8. http://dx.doi.org/10.2478/s11696-010-0008-810.2478/s11696-010-0008-8Suche in Google Scholar

[15] Löfberg, J. (2004). YALMIP: A toolbox for modelling and optimization in Matlab. In Proceedings of the CACSD Conference, September 24, 2004 (pp. 284–289). Taipei, Taiwan: TC-CACSD. Suche in Google Scholar

[16] Luyben, W. L. (2007). Chemical reactor design and control. Hoboken, NJ, USA: Wiley-Interscience. http://dx.doi.org/10.1002/978047013491710.1002/9780470134917Suche in Google Scholar

[17] MathWorks (2012). Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system. Documentation Center. Retrieved October 2, 2012, from www.mathworks.com/help/control/ref/dlqr.html Suche in Google Scholar

[18] Mikleš, J., & Fikar, M. (2007). Process modelling, identification, and control. Berlin, Germany: Springer. Suche in Google Scholar

[19] Molnár, A., Markoš, J., & Jelemensky, Ľ. (2002). Accuracy of mathematical model with regard to safety analysis of chemical reactors. Chemical Papers, 56, 357–361. Suche in Google Scholar

[20] Pólik, I. (2010). Addendum to the SeDuMi user guide, version 1.1. Retrieved October 2, 2012, from http://sedumi.ie.lehigh.edu/ Suche in Google Scholar

[21] Puna, D., & Bakošová, M. (2007). Robust PI controller design for a CSTR with uncertainties. In Proceedings of the 34th International Conference of SSCHE, May 21–25, 2007 (pp. 043-1–043-10). Tatranské Matliare, Slovakia: SSCHE. Suche in Google Scholar

[22] Sarhadi, P., Salahshoor, K., & Khaki-Sedigh, A. (2012). Robustness analysis and tuning of generalized predictive control using frequency domain approaches. Applied Mathematical Modelling, 36, 6167–6185. DOI: 10.1016/j.apm.2012.02.006. http://dx.doi.org/10.1016/j.apm.2012.02.00610.1016/j.apm.2012.02.006Suche in Google Scholar

[23] Zabiri, H., & Samyudia, Y. (2006). A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash. Journal of Process Control, 16, 693–709. DOI: 10.1016/j.proccont.2006.01.003. http://dx.doi.org/10.1016/j.jprocont.2006.01.003Suche in Google Scholar

[24] Zhang, Y. L., Kostyukova, O., & Chong, K. T. (2011). A new time-discretization for delay multiple-input nonlinear systems using the Taylor method and first order hold. Discrete Applied Mathematics, 159, 924–938. DOI: 10.1016/j.dam.2011.01.022. http://dx.doi.org/10.1016/j.dam.2011.01.02210.1016/j.dam.2011.01.022Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0296-2/html?lang=de
Button zum nach oben scrollen