Startseite Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste

  • Ivana Ćosić EMAIL logo , Marija Vuković , Zoran Gomzi und Felicita Briški
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents a kinetic analysis of the biodegradation of organic pollutants in a batch bioreactor and investigates the kinetic properties of activated sludge using different mathematical models. The treatment was conducted for different initial concentrations of leachate from 500 mg dm−3 to 5000 mg dm−3 and initial concentrations of activated sludge from 1.84 g dm−3 to 6.62 g dm−3 over 48 h. Four different kinetic models were applied to the data. The kinetic analysis was performed with the traditional Monod model, the modified Monod model with endogenous metabolism, the Haldane model, and the Haldane model extended to include endogenous metabolic consumption and known as the Endo-Haldane model. Kinetic parameters for each model were determined using differential analysis and the Nelder-Mead method of non-linear regression. The lowest deviations and very good matches with the experimental data were achieved using the Endo-Haldane model. This indicated that this model best described the process of biodegradation of leachate from tobacco waste composting. This is due to this model incorporating the effects both of inhibition and endogenous metabolism.

[1] Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271, 47–58. DOI: 10.1016/j.memsci.2005.07.008. http://dx.doi.org/10.1016/j.memsci.2005.07.00810.1016/j.memsci.2005.07.008Suche in Google Scholar

[2] APHA-AWWA-WEF (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association. Suche in Google Scholar

[3] Bae, B. U., Jung, E. S., Kim, Y. R., & Shin, H. S. (1999). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Resources, 33, 2669–2673. DOI: 10.1016/s0043-1354(98)00488-6. 10.1016/S0043-1354(98)00488-6Suche in Google Scholar

[4] Beltran, J., Gonzalez, T., & Garcia, J. (2008). Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. Journal of Hazardous Materials, 154, 839–845. DOI: 10.1016/j.jhazmat.2007.10.102. http://dx.doi.org/10.1016/j.jhazmat.2007.10.10210.1016/j.jhazmat.2007.10.102Suche in Google Scholar

[5] Beltran de Heredia, J., Torregrosa, J., Dominguez, J. R., & Partido, E. (2005). Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton’s reagent. Water Science & Technology, 51(1), 167–174. 10.2166/wst.2005.0021Suche in Google Scholar

[6] Bitton, G. (2005). Wastewater microbiology (3rd ed., pp. 211–259). Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/047171796710.1002/0471717967Suche in Google Scholar

[7] Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 166, 1103–1110. DOI: 10.2478/s11696-012-0234-3. http://dx.doi.org/10.2478/s11696-012-0234-310.2478/s11696-012-0234-3Suche in Google Scholar

[8] Bronstein, I. N., Semendjajev, K. A., Musiol, G., & Mühlig, H. (2004). Mathematical handbook (pp. 764, 794–797). Zagreb, Croatia: Golden Marketing-Tehnička Knjiga. (in Croatian) Suche in Google Scholar

[9] Casey, T. J. (1997). Unit treatment processes in water and waste engineering. New York, NY, USA: Wiley. Suche in Google Scholar

[10] Celis, E., Elefsiniotis, P., & Singhal, N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic and anaerobic conditions. Water Research, 42, 3218–3224. DOI: 10.1016/j.watres.2008.04.008. http://dx.doi.org/10.1016/j.watres.2008.04.00810.1016/j.watres.2008.04.008Suche in Google Scholar

[11] Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821, DOI: 10.2478/s11696-011-0076-4. http://dx.doi.org/10.2478/s11696-011-0076-410.2478/s11696-011-0076-4Suche in Google Scholar

[12] Dollerer, J., & Wilderer, P. A. (1996). Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology, 34, 437–444. DOI: 10.1016/s0273-1223(96)00776-7. http://dx.doi.org/10.1016/S0273-1223(96)00776-710.1016/S0273-1223(96)00776-7Suche in Google Scholar

[13] European Committee for Standardization (2002). European standard: Characterization of waste — Leaching — Compliance test for leaching of granular waste materials and sludges — Part 4: One-stage batch test at a liquid to solids ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). EN 12457-4. Brussels, Belgium. Suche in Google Scholar

[14] Gnanapragasam, G., Senthilkumar, M., Arutchelvan, V., Velayutham, T., & Nagarajan, S. (2011). Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresource Technology, 102, 627–632. DOI: 10.1016/j.biortech.2010.08.012. http://dx.doi.org/10.1016/j.biortech.2010.08.01210.1016/j.biortech.2010.08.012Suche in Google Scholar PubMed

[15] Holenda, B., Domokos, E., Rédey, A., & Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering, 32, 1270–1278. DOI: 10.1016/j.compchemeng.2007.06.008. http://dx.doi.org/10.1016/j.compchemeng.2007.06.00810.1016/j.compchemeng.2007.06.008Suche in Google Scholar

[16] Huang, X., Gui, P., & Qian, Y. (2001). Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 36, 1001–1006. DOI: 10.1016/s0032-9592(01)00135-2. http://dx.doi.org/10.1016/S0032-9592(01)00135-210.1016/S0032-9592(01)00135-2Suche in Google Scholar

[17] Mardani, Sh., Mirbagheri, A., Amin., M. M., & Ghasemian, M. (2011). Determination of biokinetic coefficients for activated sludge processes on municipal wastewater. Iranian Journal of Environmental Health Science & Engineering, 8(1), 25–34. Suche in Google Scholar

[18] Mendenhall, W. (1964). Introduction to statistics (pp. 37–38, 160–165). Belmont, CA, USA: Wadsworth Publishing Company. Suche in Google Scholar

[19] Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. DOI: 10.1016/j.procbio.2004.04.003. http://dx.doi.org/10.1016/j.procbio.2004.04.00310.1016/j.procbio.2004.04.003Suche in Google Scholar

[20] Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–317. Suche in Google Scholar

[21] Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., & Czarnecki, Z. (2009). The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology, 100, 5037–5044. DOI: 10.1016/j.biortech.2009.05.053. http://dx.doi.org/10.1016/j.biortech.2009.05.05310.1016/j.biortech.2009.05.053Suche in Google Scholar

[22] Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468–493. DOI: 10.1016/j.jhazmat.2007.09.077. http://dx.doi.org/10.1016/j.jhazmat.2007.09.07710.1016/j.jhazmat.2007.09.077Suche in Google Scholar

[23] Slezak, R., Krzystek, L., & Ledakowicz, S. (2012). Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 66, 543–549. DOI: 10.2478/s11696-012-0133-7. http://dx.doi.org/10.2478/s11696-012-0133-710.2478/s11696-012-0133-7Suche in Google Scholar

[24] Sponza, D. T. (2001). Toxicity studies in a tobacco industry biological treatment plant. Water, Air, & Soil Pollution, 134, 137–164. DOI: 10.1023/a:1014111616875. http://dx.doi.org/10.1023/A:101411161687510.1023/A:1014111616875Suche in Google Scholar

[25] Tsuneda, S., Auresenia, J., Inoue, Y., Hashimoto, Y., & Hirata, A. (2002a). Kinetic model for dynamic response of threephase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 10, 31–37. DOI: 10.1016/s1369-703x(01)00152-8. http://dx.doi.org/10.1016/S1369-703X(01)00152-810.1016/S1369-703X(01)00152-8Suche in Google Scholar

[26] Tsuneda, S., Auresenia, J., Morise, T., & Hirata, A. (2002b). Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewater treatment. Process Biochemistry, 38, 599–604. DOI: 10.1016/s0032-9592(02)00184-x. http://dx.doi.org/10.1016/S0032-9592(02)00184-X10.1016/S0032-9592(02)00184-XSuche in Google Scholar

[27] Tyrrel, S. F., Seymour, I., & Harris, J. A. (2008). Bioremediation of leachate from a green waste composting facility using waste-derived filter media. Bioresource Technology, 99, 7657–7664. DOI: 10.1016/j.biortech.2008.01.079. http://dx.doi.org/10.1016/j.biortech.2008.01.07910.1016/j.biortech.2008.01.079Suche in Google Scholar PubMed

[28] Veli, S., Öztürk, T., & Dimoglo, A. (2008).Treatment of municipal solid wastes leachate by means of chemical- and electrocoagulation. Separation and Purification Technology, 6, 82–88 DOI: 10.1016/j.seppur.2007.09.026. http://dx.doi.org/10.1016/j.seppur.2007.09.02610.1016/j.seppur.2007.09.026Suche in Google Scholar

[29] Vuković, M., Briški, F., Matošić, M., & Mijatović, I. (2006). Analysis of the activated sludge process in an MBR under starvation conditions. Chemical Engineering & Technology, 29, 357–36 DOI: 10.1002/ceat.200500314. http://dx.doi.org/10.1002/ceat.20050031410.1002/ceat.200500314Suche in Google Scholar

[30] Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., Chen, H., Du, Y., & Blankespoor, H. D. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496. DOI: 10.1023/b:bile.0000044450.16235.65. http://dx.doi.org/10.1023/B:BILE.0000044450.16235.6510.1023/B:BILE.0000044450.16235.65Suche in Google Scholar

[31] Wang, M. Z., Yang, G. Q., Min, H., Lv, Z. M., & Jia, X. Y. (2009). Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms. Water Research, 43, 4187–4196. DOI: 10.1016/j.watres.2009.07.012. http://dx.doi.org/10.1016/j.watres.2009.07.01210.1016/j.watres.2009.07.012Suche in Google Scholar PubMed

[32] Zhong, W. H., Zhu, C. J., Shu, M., Sun, K. D., Zhao, L., Wang, C., Ye, Z. J., & Chen, J. M. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101, 6935–6941. DOI: 10.1016/j.biortech.2010.03.142. http://dx.doi.org/10.1016/j.biortech.2010.03.14210.1016/j.biortech.2010.03.142Suche in Google Scholar PubMed

[33] Zwietering, M. H., Jongenburger, I., Rombouts, M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881. 10.1128/aem.56.6.1875-1881.1990Suche in Google Scholar PubMed PubMed Central

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0287-3/pdf
Button zum nach oben scrollen