Home Bulgarian natural diatomites: modification and characterization
Article
Licensed
Unlicensed Requires Authentication

Bulgarian natural diatomites: modification and characterization

  • Paunka Vassileva EMAIL logo , Madlena Apostolova , Albena Detcheva and Elisaveta Ivanova
Published/Copyright: December 27, 2012
Become an author with De Gruyter Brill

Abstract

Natural Bulgarian diatomite modified by oxidation with sulfuric acid and H2O2 or by coating with manganese oxide was characterized considering its chemical composition, surface area, pore volume, and structure. Modified diatomites displayed larger surface area and pore volumes in comparison with untreated natural diatomite, which favored their sorption behavior. Sorption properties of diatomites towards Fe3+, Pb2+, Cu2+, Cd2+, Mn2+, Ni2+, Co2+, Cr3+, Pd2+, Ca2+, and Mg2+ were investigated and their sorption capacities were determined. Sorption properties of manganese oxide-modified diatomite were superior to those of diatomite modified by oxidation. Owing to its high sorption capacity towards Co2+, Ni2+, Pb2+, Cr3+, Fe2+, Cu2+, and Cd2+, the manganese oxide-modified diatomite is a promising low-cost sorbent for selective removal of milligram amounts of these toxic metal ions from contaminated water.

[1] Antonides, L. E. (1998). Diatomite. In Mineral commodity summaries (pp. 56–57). Reston, VA, USA: US Geological Survey. Search in Google Scholar

[2] Al-Degs, Y., Khraisheh, M. A. M., & Tutunji, M. F. (2001). Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research, 35, 3724–3728. DOI: 10.1016/s0043-1354(01)00071-9. http://dx.doi.org/10.1016/S0043-1354(01)00071-910.1016/S0043-1354(01)00071-9Search in Google Scholar

[3] Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69, 229–238. DOI: 10.1016/j.jenvman.2003.09.005. http://dx.doi.org/10.1016/j.jenvman.2003.09.00510.1016/j.jenvman.2003.09.005Search in Google Scholar

[4] Al-Ghouti, M. A., Khraisheh, M. A. M., Ahmad, M. N. M., & Allen, S. (2009). Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 165, 589–598. DOI: 10.1016/j.jhazmat.2008.10.018. http://dx.doi.org/10.1016/j.jhazmat.2008.10.01810.1016/j.jhazmat.2008.10.018Search in Google Scholar

[5] Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7. http://dx.doi.org/10.1016/S0304-3894(02)00263-710.1016/S0304-3894(02)00263-7Search in Google Scholar

[6] Bailey, S. E., Olin, T. J., Brica, R. M., & Adrian, D. D. (1999). A review of the potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479. DOI: 10.1016/s0043-1354(98)00475-8. http://dx.doi.org/10.1016/S0043-1354(98)00475-810.1016/S0043-1354(98)00475-8Search in Google Scholar

[7] Bakr, H. E. G. M. M. (2010). Diatomite: Its characterization, modifications and applications. Asian Journal of Material Science, 2, 121–136. DOI: 10.3923/ajmskr.2010.121.136. http://dx.doi.org/10.3923/ajmskr.2010.121.13610.3923/ajmskr.2010.121.136Search in Google Scholar

[8] Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140, 114–131. DOI: 10.1016/j.cis.2007.12.008. http://dx.doi.org/10.1016/j.cis.2007.12.00810.1016/j.cis.2007.12.008Search in Google Scholar

[9] Boevski, I., Genov, K., Boevska, N., Milenova, K., Batakliev, T., Georgiev, V., Nikolov, P., & Sarker, D. K. (2011). Low temperature ozone decomposition on Cu2+, Zn2+ and Mn2+-exchanged clinoptilolite. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 33–38. Search in Google Scholar

[10] Brandão, M. S. B., & Galembeck, F. (1990). Copper, lead and zinc adsorption on MnO2-impregnated cellulose acetate. Colloids and Surfaces, 48, 351–362. DOI: 10.1016/0166-6622(90)80240-5. http://dx.doi.org/10.1016/0166-6622(90)80240-510.1016/0166-6622(90)80240-5Search in Google Scholar

[11] Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159, 235–244. DOI: 10.1016/j.jhazmat.2008.02.035. http://dx.doi.org/10.1016/j.jhazmat.2008.02.03510.1016/j.jhazmat.2008.02.035Search in Google Scholar PubMed

[12] Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. Journal of Hazardous Materials, 161, 677–685. DOI: 10.1016/j.jhazmat.2008.04.020 http://dx.doi.org/10.1016/j.jhazmat.2008.04.02010.1016/j.jhazmat.2008.04.020Search in Google Scholar PubMed

[13] Fan, H. J., & Anderson, P. R. (2005). Copper and cadmium removal by Mn oxide-coated granular activated carbon, Separation and Purification Technology, 45, 61–67. DOI: 10.1016/j.seppur.2005.02.009. http://dx.doi.org/10.1016/j.seppur.2005.02.00910.1016/j.seppur.2005.02.009Search in Google Scholar

[14] Gocheva, E. (1983). Physico-chemical properties of natural Bulgarian diatomites and possibilities for their regulation. PhD. thesis, Bulgarian Academy of Sciences, Sofia, Bulgaria. Search in Google Scholar

[15] Gocheva, E., Lakov, L., & Tsvetanova, K. (1989). A method of preparation of powdered materials from natural infusorial earths with a high impurity content. Communications of the Department of Chemistry of the Bulgarian Academy of Sciences, 22, 656–668. (in Russian) Search in Google Scholar

[16] Gocheva, E., Vassileva, P., Lakov, L., & Peshev, O. (1993). Phosphazenes on diatomaceous earths in water adsorption. Journal of Materials Science, 28, 5251–5256. DOI: 10.1007/bf00570073. http://dx.doi.org/10.1007/BF0057007310.1007/BF00570073Search in Google Scholar

[17] Gürü, M., Venedik, D., & Murathana, A. (2008). Removal of trivalent chromium from water using low-cost natural diatomite. Journal of Hazardous Materials,160, 318–323 DOI: 10.1016/j.jhazmat.2008.03.002. http://dx.doi.org/10.1016/j.jhazmat.2008.03.00210.1016/j.jhazmat.2008.03.002Search in Google Scholar

[18] Han, R. P., Lu, Z., Zou, W. H., Wang, D. T., Jie, S., & Yang, J. J. (2006). Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: II. Equilibrium study and competitive adsorption. Journal of Hazardous Materials, 137, 480–488. DOI: 10.1016/j.jhazmat.2006.02.018. http://dx.doi.org/10.1016/j.jhazmat.2006.02.01810.1016/j.jhazmat.2006.02.018Search in Google Scholar

[19] Khraisheh, M. A. M., Al-degs, Y. S., & Mcminn, W. A. M. (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal, 99, 177–184. DOI: 10.1016/j.cej.2003.11.029. http://dx.doi.org/10.1016/j.cej.2003.11.02910.1016/j.cej.2003.11.029Search in Google Scholar

[20] Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39, 922–932. DOI: 10.1016/j.watres.2004.12.008. http://dx.doi.org/10.1016/j.watres.2004.12.00810.1016/j.watres.2004.12.008Search in Google Scholar

[21] Kooli, F., & Jones, W. (1997). Characterization and catalytic properties of a saponite clay modified by acid activation. Clay Minerals, 32, 633–643. DOI: 10.1180/claymin.1997.032.4.13. http://dx.doi.org/10.1180/claymin.1997.032.4.1310.1180/claymin.1997.032.4.13Search in Google Scholar

[22] Lakov, L., Vassileva, P., & Gocheva, E. (1995). Sorption of Co(II), Ni(II), Ag(I) and Au(III) on pyrazolone-containing inorganic sorbents. Fresenius’ Journal of Analytical Chemistry, 351, 583–584. DOI: 10.1007/bf00322737. http://dx.doi.org/10.1007/BF0032273710.1007/BF00322737Search in Google Scholar

[23] Li, E., Zeng, X. Y., & Fan, Y. H. (2009). Removal of chromium ion (III) from aqueous solution by manganese oxide and microemulsion modified diatomite. Desalination, 238, 158–165. DOI: 10.1016/j.desal.2007.11.062. http://dx.doi.org/10.1016/j.desal.2007.11.06210.1016/j.desal.2007.11.062Search in Google Scholar

[24] Lü, R. Q., Tangbo, H. J., Wang, Q. Y., & Xiang, S. H. (2003). Properties and characterization of modifed HZSM-5 zeolites. Journal of Natural Gas Chemistry, 12, 56–62. Search in Google Scholar

[25] Merkle, P. B., Knocke, W. R., & Gallagher, D. L. (1997). Method for coating filter media with synthetic manganese oxide. Journal of Environmental Engineering, 123, 642–649. DOI: 10.1061/(ASCE)0733-9372(1997)123:7(642). http://dx.doi.org/10.1061/(ASCE)0733-9372(1997)123:7(642)10.1061/(ASCE)0733-9372(1997)123:7(642)Search in Google Scholar

[26] Mohamedbakr, H., & Burkitbaev, M. (2008). Immobilization of lead ion from aqueous solutions by using natural/processed diatomite. Oecologia Aegyptiaca, 1, 21–29. Search in Google Scholar

[27] Moore, W. S., & Reid, D. F. (1973). Extraction of radium from natural waters using manganese-impregnated acrylic fibres. Journal of Geophysical Research, 78, 8880–8886. DOI: 10.1029/jc078i036p08880. http://dx.doi.org/10.1029/JC078i036p0888010.1029/JC078i036p08880Search in Google Scholar

[28] Pierce, C. (1953). Computation of pore sizes from physical adsorption data. Journal of Physical Chemistry, 57, 149–152. DOI: 10.1021/j150503a005. http://dx.doi.org/10.1021/j150503a00510.1021/j150503a005Search in Google Scholar

[29] Pookmanee, P., Thippraphan, P., & Phanichphant, S. (2010). Manganese chloride modification of natural diatomite by using hydrothermal method. Journal of the Microscopy Society of Thailand, 24(2), 99–102. Search in Google Scholar

[30] Puanngam, M., & Unob, F. (2008). Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. Journal of Hazardous Materials, 154, 578–587. DOI: 10.1016/j.jhazmat.2007.10.090. http://dx.doi.org/10.1016/j.jhazmat.2007.10.09010.1016/j.jhazmat.2007.10.090Search in Google Scholar

[31] Sagara, F., Ning, W. B., Yoshida, I., & Ueno, K. (1989). Preparation and adsorption properties of λ-MnO2-cellulose hybridtype ion-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater. Separation Science and Technology, 24, 1227–1243. DOI: 10.1080/014963989080498 99. Search in Google Scholar

[32] Semushin, A. M., Belov, B. A., & Stepchenko, I. V. (1984). Modification of active carbons with manganese dioxide. Journal of Applied Chemistry of the USSR, 57, 2411–2412. Search in Google Scholar

[33] Shawabkeh, R. A., & Tutunji, M. F. (2003). Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Science, 24, 111–120. DOI: 10.1016/s0169-1317(03)00154-6. http://dx.doi.org/10.1016/S0169-1317(03)00154-610.1016/S0169-1317(03)00154-6Search in Google Scholar

[34] Sheng, G. D., Wang, S. W., Hu, J., Lua, Y., Li, J. X., Dong, Y. H., & Wang, X. K. (2009). Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids and Surfaces A, 339, 159–166. DOI: 10.1016/j.colsurfa.2009.02.016. http://dx.doi.org/10.1016/j.colsurfa.2009.02.01610.1016/j.colsurfa.2009.02.016Search in Google Scholar

[35] Todorova, O., Vassileva, P., & Lakov, L. (1993). Synthesis and characterization of inorganic sorbents containing pyrazolone. Fresenius’ Journal of Analytical Chemistry, 346, 943–946. DOI: 10.1007/bf00322755. http://dx.doi.org/10.1007/BF0032275510.1007/BF00322755Search in Google Scholar

[36] Tripathy, S. S., & Kanungo, S. B. (2005). Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH. Journal of Colloid and Interface Science, 284, 30–38. DOI: 10.1016/j.jcis.2004.09.054. http://dx.doi.org/10.1016/j.jcis.2004.09.05410.1016/j.jcis.2004.09.054Search in Google Scholar PubMed

[37] Tripathy, S. S., Bersillon, J. L., & Gopal, K. (2006). Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 194, 11–21. DOI: 10.1016/j.desal.2005.10.023. http://dx.doi.org/10.1016/j.desal.2005.10.02310.1016/j.desal.2005.10.023Search in Google Scholar

[38] Tsai, W. T., Hsien, K. J., & Yang, J. M. J. (2004). Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. Journal of Colloid and Interface Science, 275, 428–433. DOI: 10.1016/j.jcis2004.02.093. http://dx.doi.org/10.1016/j.jcis.2004.02.093Search in Google Scholar

[39] Tsai, W. T., Hsien, K. J., Chang, Y. M., & Lo, C. C. (2005). Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology, 96, 657–663. DOI: 10.1016/j.biortech.2004.06.023. http://dx.doi.org/10.1016/j.biortech.2004.06.02310.1016/j.biortech.2004.06.023Search in Google Scholar PubMed

[40] Vassileva, P., Gentscheva, G., Ivanova, E., Tzvetkova, P., Voykova, D., & Apostolova, M. (2011). Characterization of natural diatomites from Bulgaria. Comptes Rendus de l’Académie Bulgare des Sciences, 64, 823–830. Search in Google Scholar

Published Online: 2012-12-27
Published in Print: 2013-3-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0272-x/pdf?lang=en
Scroll to top button