Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
Abstract
New fluorescence dyes with an alkoxysilane moiety were synthesised by the condensation of 3-(triethoxysilyl)-1-propanamine (3-aminopropyltriethoxysilane) with 4,10-benzothioxanthene-3,1′-dicarboxylic acid anhydride (BTXA) and N,N-dimethylaminonaphthalene-1,8-dicarboxylic acid anhydride (DMANA), which was accompanied by the formation of an imidic bridge. The compounds N-(3-(triethoxysilyl)propyl)-thioxantheno[2,1,9-dej]isoquinoline-1,3-dione (BTX-S) and 4-(N′, N′-dimethyl)-N-(triethoxysilyl)propyl-1,8-naphthalene dicarboxylic acid imide (DMAN-S) were characterised by steady-state and time-resolved fluorescence spectroscopy in chloroform and ethanol. Both conjugates (BTX-S and DMAN-S) exhibited absorption and emission bands in the same region as the un-substituted BTXA and DMANA. An important Stokes shift was observed for DMAN-S in ethanol. A high fluorescence quantum yield was observed for BTX-S in both solvents and for DMAN-S in chloroform. In addition, the newly developed fluorescent silane dyes were covalently attached to the microscopic particles of layered silicates and on the surface of SiO2 wafers as a proof of concept for fluorescence particle (surface) visualisation. The surface wafer modification was precisely characterised by X-ray photoelectron spectroscopy (XPS). Successful covalent linkage onto the particles of layered silicates was proved by confocal laser scanning microscopy technique.
[1] Ameloot, R., Roeffaers, M., Baruah, M., De Cremer, G., Sels, B., De Vos, D., & Hofkens, J. (2009). Towards direct monitoring of discrete events in a catalytic cycle at the single molecule level. Photochemical & Photobiological Sciences, 8, 453–456. DOI: 10.1039/b821657f. http://dx.doi.org/10.1039/b821657f10.1039/b821657fSearch in Google Scholar
[2] Arbeloa, F. L., Martínez, V. M., Prieto, J. B., & Arbeloa, I. L. (2002). Adsorption of rhodamine 3B dye on saponite colloidal particles in aqueous suspensions. Langmuir, 18, 2658–2664. DOI: 10.1021/la0113163. http://dx.doi.org/10.1021/la011316310.1021/la0113163Search in Google Scholar
[3] Birks, J. B. (1970). Fluorescence. In Photophysics of aromatic molecules (pp. 84–139). London, UK: Wiley-Interscience. Search in Google Scholar
[4] Bringley, J. F., Penner, T. L., Wang, R., Harder, J. F., Harrison, W. J., & Buonemani, L. (2008). Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. Journal of Colloid and Interface Science, 320, 132–139. DOI: 10.1016/j.jcis.2007.09.006. http://dx.doi.org/10.1016/j.jcis.2007.09.00610.1016/j.jcis.2007.09.006Search in Google Scholar
[5] Bujdák, J., & Iyi, N. (2005). Molecular orientation of rhodamine dyes on surfaces of layered silicates. Journal of Physical Chemistry B, 109, 4608–4615. DOI: 10.1021/jp0470039. http://dx.doi.org/10.1021/jp047003910.1021/jp0470039Search in Google Scholar
[6] Bujdák, J., Chorvát, D., Jr., & Iyi, N. (2010). Resonance energy transfer between rhodamine molecules adsorbed on layered silicate particles. Journal of Physical Chemistry C, 114, 1246–1252. DOI: 10.1021/jp9098107. http://dx.doi.org/10.1021/jp909810710.1021/jp9098107Search in Google Scholar
[7] Capek, I. (2002). Fate of excited probes in micellar systems. Advances in Colloid and Interface Science, 97, 91–149. DOI: 10.1016/s0001-8686(01)00049-5. http://dx.doi.org/10.1016/S0001-8686(01)00049-510.1016/S0001-8686(01)00049-5Search in Google Scholar
[8] Chmela, Š., Danko, M., & Hrdlovic, P. (1999). Preparation, photochemical stability and photostabilizing efficiency of adducts of 1,8-naphthaleneimide and hindered amine stabilizers in polymer matrices. Polymer Degradation and Stability, 63, 159–164. DOI: 10.1016/s0141-3910(98)00088-3. http://dx.doi.org/10.1016/S0141-3910(98)00088-310.1016/S0141-3910(98)00088-3Search in Google Scholar
[9] Chorvat, D., & Chorvatova, A. (2006). Spectrally resolved time-correlated single photon counting: a novel approach for characterisation of endogenous fluorescence in isolated cardiac myocytes. European Biophysics Journal, 36, 73–83. DOI: 10.1007/s00249-006-0104-4. http://dx.doi.org/10.1007/s00249-006-0104-410.1007/s00249-006-0104-4Search in Google Scholar PubMed
[10] Czarnik, A. W. (1994). Chemical communication in water using fluorescent chemosensors. Accounts in Chemical Research, 27, 302–308. DOI: 10.1021/ar00046a003. http://dx.doi.org/10.1021/ar00046a00310.1021/ar00046a003Search in Google Scholar
[11] Czímerová, A., Bujdák, J., & Gáplovsky, A. (2004). The aggregation of thionine and methylene blue dye in smectite dispersion. Colloids and Surfaces A: Physicochemical Engineering Aspects, 243, 89–96. DOI: 10.1016/j.colsurfa.2004.05.002. http://dx.doi.org/10.1016/j.colsurfa.2004.05.00210.1016/j.colsurfa.2004.05.002Search in Google Scholar
[12] Danko, M., Szabo, E., & Hrdlovic, P. (2011). Synthesis and spectral characteristics of fluorescent dyes based on coumarin fluorophore and hindered amine stabilizer in solution and polymer matrices. Dyes and Pigments, 90, 129–138. DOI: 10.1016/j.dyepig.2010.12.006. http://dx.doi.org/10.1016/j.dyepig.2010.12.00610.1016/j.dyepig.2010.12.006Search in Google Scholar
[13] Gao, X., He, J., Deng, L., & Cao, H. (2009). Synthesis and characterisation of functionalized rhodamine B-doped silica nanoparticles. Optical Materials, 31, 1715–1719. DOI: 10.1016/j.optmat.2009.05.004. http://dx.doi.org/10.1016/j.optmat.2009.05.00410.1016/j.optmat.2009.05.004Search in Google Scholar
[14] Hrdlovič, P., Chmela, Š., Danko, M., Sarakha, M., & Guyot, G. (2008). Spectral properties of probes containing benzothioxanthene chromophore linked with hindered amine in solution and in polymer matrices. Journal of Fluorescence, 18, 393–402. DOI: 10.1007/s10895-007-0279-9. http://dx.doi.org/10.1007/s10895-007-0279-910.1007/s10895-007-0279-9Search in Google Scholar
[15] Kawski, A., Kubicki, A., & Kuliński, B. (1993). Unusual absorption and fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene in poly(vinyl alcohol) film. Journal of Photochemistry and Photobiology A: Chemistry, 71, 161–167. DOI: 10.1016/1010-6030(93)85068-j. http://dx.doi.org/10.1016/1010-6030(93)85068-J10.1016/1010-6030(93)85068-JSearch in Google Scholar
[16] Kollár, J., Hrdlovič, P., Chmela, Š., Sarakha, M., & Guyot, G. (2005). Synthesis and transient absorption spectra of derivatives of 1,8-naphthalic anhydrides and naphthalimides containing 2,2,6,6-tetramethylpiperidine; triplet route of deactivation. Journal of Photochemistry and Photobiology A: Chemistry, 170, 151–159. DOI: 10.1016/j.jphotochem.2004. 07.021. http://dx.doi.org/10.1016/j.jphotochem.2004.07.02110.1016/j.jphotochem.2004.07.021Search in Google Scholar
[17] Kollár, J., Hrdlovič, P., & Chmela, S. (2009). Synthesis and spectral characteristics of substituted 1,8-naphthalimides: Intramolecular quenching by mono-nitroxides. Journal of Photochemistry and Photobiology A: Chemistry, 204, 191–199. DOI: 10.1016/j.jphotochem.2009.03.018. http://dx.doi.org/10.1016/j.jphotochem.2009.03.01810.1016/j.jphotochem.2009.03.018Search in Google Scholar
[18] Konstantinova, T., Lazarova, R., Venkova, A., & Vassileva, V. (2004). On the synthesis and photostability of some new naphthalimide dyes. Polymer Degradation and Stability, 84, 405–409. DOI: 10.1016/j.polymdegradstab.2003.11.016. http://dx.doi.org/10.1016/j.polymdegradstab.2003.11.01610.1016/j.polymdegradstab.2003.11.016Search in Google Scholar
[19] Lakowicz, J. R. (2006). Solvent and environmental effects. In Principles of fluorescence spectroscopy (3rd ed., pp. 205–216). New York, NY, USA: Springer Science. http://dx.doi.org/10.1007/978-0-387-46312-4_610.1007/978-0-387-46312-4_6Search in Google Scholar
[20] Lenhart, J. L., van Zanten, J. H., Dunkers, J. P., & Parnas, R. S. (2000a). Interfacial response of a fluorescent dye grafted to glass. Langmuir, 16, 8145–8152. DOI: 10.1021/la000553n. http://dx.doi.org/10.1021/la000553n10.1021/la000553nSearch in Google Scholar
[21] Lenhart, J. L., van Zanten, J. H., Dunkers, J. P., Zimba, C. G., James, C. A., Pollack, S. K., & Parnas, R. S. (2000b). Immobilizing a fluorescent dye offers potential to investigate the glass/resin interface. Journal of Colloid and Interface Science, 221, 75–86. DOI: 10.1006/jcis.1999.6577. http://dx.doi.org/10.1006/jcis.1999.657710.1006/jcis.1999.6577Search in Google Scholar PubMed
[22] Lenhart, J. L., van Zanten, J. H., Dunkers, J. P., & Parnas, R. S. (2002). Using a localized fluorescent dye to probe the glass/resin interphase. Polymer Composites, 23, 555–563. DOI: 10.1002/pc.10456. http://dx.doi.org/10.1002/pc.1045610.1002/pc.10456Search in Google Scholar
[23] Martin, H. J., Schulz, K. H., Bumgardner, J. D., & Walters, K. B. (2008). An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan. Applied Surface Science, 254, 4599–4605. DOI: 10.1016/j.apsusc.2008.01.066. http://dx.doi.org/10.1016/j.apsusc.2008.01.06610.1016/j.apsusc.2008.01.066Search in Google Scholar
[24] Nakashima, K., Winnik, M. A., Dai, K. H., Kramer, E. J., & Washiyama, J. (1992). Fluorescent probe studies on the microstructure of polystyrene-poly(vinylpyridine) diblock copolymer film. Macromolecules, 25, 6866–6870. DOI: 10.1021/ma00051a022. http://dx.doi.org/10.1021/ma00051a02210.1021/ma00051a022Search in Google Scholar
[25] Nedelčev, T., Račko, D., & Krupa, I. (2008). Preparation and characterisation of a new derivative of rhodamine B with an alkoxysilane moiety. Dyes and Pigments, 76, 550–556. DOI: 10.1016/j.dyepig.2006.11.002. http://dx.doi.org/10.1016/j.dyepig.2006.11.00210.1016/j.dyepig.2006.11.002Search in Google Scholar
[26] de Silva, A. P., Gunarante, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97, 1515–1566. DOI: 10.1021/cr960386p. http://dx.doi.org/10.1021/cr960386p10.1021/cr960386pSearch in Google Scholar PubMed
[27] Trindade, F. J., Fernandes, G. J. T., Araújo, A. S., Fernandes, V. J., Jr., Silva, B. P. G., Nagayasu, R. Y., Politi, M. J., Castro, F. L., & Brochsztain, S. (2008). Covalent attachment of 3,4,9,10-perylenediimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Microporous and Mesoporous Materials, 113, 463–471. DOI: 10.1016/j.micromeso.2007.12.013. http://dx.doi.org/10.1016/j.micromeso.2007.12.01310.1016/j.micromeso.2007.12.013Search in Google Scholar
[28] Trindade, F. J., Rey, J. F. Q., & Brochsztain, S. (2011). Covalent attachment of 4-amino-1,8-naphthalimides onto the walls of mesoporous molecular sieves MCM-41 and SBA-15. Dyes and Pigments, 89, 97–104. DOI: 10.1016/j.dyepig.2010.09.009. http://dx.doi.org/10.1016/j.dyepig.2010.09.00910.1016/j.dyepig.2010.09.009Search in Google Scholar
[29] Tronc, F., Mei, L., Lu, J., Winnik, M. A., Kaul, B. L., & Graciet, J. C. (2003). Fluorescent polymer particles by emulsion and miniemulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 41, 766–778. DOI: 10.1002/pola.10619. http://dx.doi.org/10.1002/pola.1061910.1002/pola.10619Search in Google Scholar
[30] Wahab, M. A., Sudhakar, S., Elaine, Y., & Sellinger, A. (2008). Evaporation-induced self-assembly of mesoscopically ordered organic/organosilica nanocomposite thin films with photoluminescent properties and improved hardness. Chemistry of Materials, 20, 1855–1861. DOI: 10.1021/cm702753b. http://dx.doi.org/10.1021/cm702753b10.1021/cm702753bSearch in Google Scholar
[31] Wahab, M. A., & He, C. (2009). Self-assembly, optical and mechanical properties of surfactant-directed biphenyl-bridged periodic mesostructured organosilica films with molecular-scale periodicity in the pore walls. Langmuir, 25, 832–838. DOI: 10.1021/la803192z. http://dx.doi.org/10.1021/la803192z10.1021/la803192zSearch in Google Scholar PubMed
[32] Wahab, M. A., Hussain, H., & He, C. (2009). Photoactive perylenediimide-bridged silsesquioxane functionalized periodic mesoporous organosilica thin films (PMO-SBA15): Synthesis, self-assembly, and photoluminescent and enhanced mechanical properties. Langmuir, 25, 4743–4750. DOI: 10.1021/la900042g. http://dx.doi.org/10.1021/la900042g10.1021/la900042gSearch in Google Scholar
[33] Winnik, F. M., & Regismond, S. T. A. (1996). Fluorescence methods in the study of the interactions of surfactants with polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 118, 1–39. DOI: 10.1016/0927-7757(96)03733-8. http://dx.doi.org/10.1016/0927-7757(96)03733-810.1016/0927-7757(96)03733-8Search in Google Scholar
[34] Zimerman, O. E., & Weiss, R. G. (1998). Static and dynamic fluorescence from α,ω-di(1-pyrenyl)alkanes in polyethylene films. Control of probe conformations and information about microstructure of the media. Journal of Physical Chemistry A, 102, 5364–5374. DOI: 10.1021/jp972758j. http://dx.doi.org/10.1021/jp972758j10.1021/jp972758jSearch in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone
Articles in the same Issue
- Professor Dr. Štefan Toma—excellent scientist and teacher—celebrates his 75th birthday
- Palladium-catalysed Claisen rearrangement of 6-allyloxypurines
- Applicability of photochemically generated pendant benzoyl peroxides in both “grafting from” and “grafting to” techniques
- Spectral characterisation of new organic fluorescent dyes with an alkoxysilane moiety and their utilisation for the labelling of layered silicates
- Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones
- Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines
- Methyltrioxorhenium-catalysed oxidation of secondary amines to nitrones in ionic liquids
- Thiophenium-ylides: Synthesis and reactivity
- Aminohydroxylation of divinylcarbinol and its application to the synthesis of bicyclic hydroxypyrrolidine and aminotetrahydrofuran building blocks
- Novel quercetin derivatives: synthesis and screening for anti-oxidant activity and aldose reductase inhibition
- Total synthesis of N,O,O,O-tetraacetyl-d-ribo-phytosphingosine and its 2-epi-congener
- A concise synthesis of enantiomerically pure aroyl-l-alanines and dihydroaroyl-l-alanines
- Synthesis and properties of macrocyclic diazene switch with binaphthalene unit attached via acrylamide linkers
- Conjugated push-pull salts derived from linear benzobisthiazole: preparation and optical properties
- Effect of reactants’ concentration on the ratio and yield of E,Z isomers of isatin-3-(4-phenyl)semicarbazone and N-methylisatin-3-(4-phenyl)semicarbazone