Abstract
This study aimed to assess the antioxidant compound effects on oxidisable substrates, using an effective bio-mimetic system based on human low density lipoproteins (LDL). Thermally generated radicals induce LDL oxidative changes to be identified and quantified. The bio-mimetic system thus developed responded linearly to radicals’ concentration over a range of 10−6-10−5 mol L−1. Cu2+ accentuates lipoperoxidation but, when rosmarinic acid was present, Cu2+ produced an unexpected effect, i.e. increased antioxidant efficiency against lipoperoxidation. Rosmarinic acid inhibits production of lipoperoxides by up to 30 % in the absence of Cu2+ and up to 70 % in its presence when the rosmarinic acid-to-Cu molar ratio is 1: 1.
[1] Bagnati, M., Perugini, C., Cau, C., Bordone, R., Albano, E., & Bellomo, G. (1999). When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical Journal, 340, 143–152. http://dx.doi.org/10.1042/0264-6021:340014310.1042/bj3400143Search in Google Scholar
[2] Dimitros, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17, 505–512. DOI: 10.1016/j.tifs.2006.04.004. http://dx.doi.org/10.1016/j.tifs.2006.04.00410.1016/j.tifs.2006.04.004Search in Google Scholar
[3] Fan, C., Liu, X., Pang, J., Li, G., & Scheer, H. (2004). Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Analytica Chimica Acta, 523, 225–228. DOI: 10.1016/j.aca.2004.07.038. http://dx.doi.org/10.1016/j.aca.2004.07.03810.1016/j.aca.2004.07.038Search in Google Scholar
[4] Firth, C. A., Crone, E. M., Flavall, E. A., Roake, J. A., & Gieseg, S. P. (2008). Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin. Biochimica et Biophysica Acta — Molecular Cell Research, 1783, 1095–1101. DOI: 10.1016/j.bbamcr.2008.02.010. http://dx.doi.org/10.1016/j.bbamcr.2008.02.01010.1016/j.bbamcr.2008.02.010Search in Google Scholar
[5] Gutteridge, J. M. C. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828. 10.1093/clinchem/41.12.1819Search in Google Scholar
[6] Halliwell, B. (2009). The wandering of a free radical. Free Radical Biology and Medicine, 46, 531–542. DOI: 10.1016/j.freeradbiomed.2008.11.008. http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.00810.1016/j.freeradbiomed.2008.11.008Search in Google Scholar
[7] Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4th ed., pp. 502–505). New York, NY, USA: Oxford University Press. Search in Google Scholar
[8] Khaki, A., Imani, S. A. M., & Golzar, F. S. (2012). Effects of rosmarinic acid on male sex hormones (testosterone-FSHLH) and testis tissue apoptosis after exposure to electromagnetic field (EMF) in rats. African Journal of Pharmacy and Pharmacology, 6, 248–252. DOI: 10.5897/ajpp11.701. 10.5897/AJPP11.701Search in Google Scholar
[9] Kinter, M. (1995). Analytical technologies for lipid oxidation products analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 671, 223–236. DOI: 10.1016/0378-4347(95)00189-p. http://dx.doi.org/10.1016/0378-4347(95)00189-P10.1016/0378-4347(95)00189-PSearch in Google Scholar
[10] Kovatcheva-Apostolova, E. G., Georgiev, M. I., Ilieva, M. P., Skibsted, L. H., Rødtjer, A., & Andersen, M. L. (2008). Extracts of plant cell cultures of Lavandula vera and Rosa damascene as sources of phenolic antioxidants for use in foods. European Food Research and Technology, 227, 1243–1249. DOI: 10.1007/s00217-008-0842-x. http://dx.doi.org/10.1007/s00217-008-0842-x10.1007/s00217-008-0842-xSearch in Google Scholar
[11] Litescu, S. C., Cioffi, N., Sabbatini, L., & Radu, G. L. (2002). Study of phenol-like compounds antioxidative behavior on low-density lipoprotein gold modified electrode. Electroanalysis, 14, 858–865. DOI: 10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U. http://dx.doi.org/10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-USearch in Google Scholar
[12] Litescu, S. C., Tache, A., Eremia, S. A.M., Albu, C., & Radu, G. L. (2010). Electrochemical evaluation of polyphenols preservative effect against lipoperoxidation. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72, 67–74. Search in Google Scholar
[13] Monk, P. M. S. (2001). Fundamentals of electroanalytical chemistry (pp. 156–175). Chichester, UK: Wiley. Search in Google Scholar
[14] Murakami, K., Haneda, M., Qiao, S., Naruse, M., & Yoshino, M. (2007). Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species. Toxicology in Vitro, 21, 613–617. DOI: 10.1016/j.tiv.2006.12.005. http://dx.doi.org/10.1016/j.tiv.2006.12.00510.1016/j.tiv.2006.12.005Search in Google Scholar
[15] Pastor, I., Esquembre, R., Micol, V., Mallavia, R., & Mateo, M. R. (2004). A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol-gel glasses. Analytical Biochemistry, 334, 335–343. DOI: 10.1016/j.ab.2004.08.012. http://dx.doi.org/10.1016/j.ab.2004.08.01210.1016/j.ab.2004.08.012Search in Google Scholar
[16] Prouillac, C., Vicendo, P., Garrigues, J. C., Poteau, R., & Rima, R. (2009). Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radical Biology and Medicine, 46, 1139–1148. DOI: 10.1016/j.freeradbiomed.2009.01.016. http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.01610.1016/j.freeradbiomed.2009.01.016Search in Google Scholar
[17] Rea, G., Antonacci, A., Lambreva, M., Pastorelli, S., Tibuzzi, A., Ferrari, S., Fischer, D., Johanningmeier, U., Oleszek, W., Doroszewska, T., Rizzo, A. M., Berselli, P. V. R., Berra, B., Bertoli, A., Pistelli, L., Ruffoni, B., Calas-Blanchard, C., Marty, J. L., Litescu, S. C., Diaconu, M., Touloupakis, E., Ghaanotakis, D., & Giardi, M. T. (2011). Integrated plant biotechnologies applied to safer and healtier food production: The Nutra-Snack manufacturilg chain. Trends in Food & Technology, 22, 353–366. DOI: 10.1016/j.tifs.2011.04.005. http://dx.doi.org/10.1016/j.tifs.2011.04.00510.1016/j.tifs.2011.04.005Search in Google Scholar
[18] Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S–217S. 10.1093/ajcn/81.1.215SSearch in Google Scholar
[19] Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A. R., & Hamedani, M. P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacognosy Magazine, 8(29), 37–41. DOI: 10.4103/0973-1296.93316. http://dx.doi.org/10.4103/0973-1296.9331610.4103/0973-1296.93316Search in Google Scholar
[20] Tache, A., Cotrone, S., Litescu, S. C., Cioffi, N., Torsi, L., Sabbatini, L., & Radu, G. L. (2011a). Spectrochemical characterization of thin layers of lipoprotein self-assembled films on solid supports under oxidation process. Analytical Letters, 44, 747–760. DOI: 10.1080/00032711003790098. http://dx.doi.org/10.1080/0003271100379009810.1080/00032711003790098Search in Google Scholar
[21] Tache, A., Litescu, S. C., & Radu, L. G. (2011b). Spectroscopic studies on lipoprotein structure modification under oxidative stress. Spectroscopy, 26, 167–178. DOI: 10.3233/spe-2011-0533. Search in Google Scholar
[22] Tallineau, C., Pontcharraud, R., Guettier, A., & Piriou, A. (1992). Cu(2+)-induced lipid oxidation in plasma: questionable relation between cholesterol oxidation and LDL modification. Biochemistry International, 27, 983–990. Search in Google Scholar
[23] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009. http://dx.doi.org/10.1016/j.cbi.2005.12.00910.1016/j.cbi.2005.12.009Search in Google Scholar
[24] Volin, P. (2001). Analysis of steroidal lipids by gas and liquid chromatography. Journal of Chromatography A, 935, 125–140. DOI: 10.1016/s0021-9673(01)01089-5. http://dx.doi.org/10.1016/S0021-9673(01)01089-510.1016/S0021-9673(01)01089-5Search in Google Scholar
[25] Wilson, R., Smith, R., Wilson, P., Shepherd, M. J., & Riemersma, R. A. (1997). Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxyl fatty acids in biological samples and food as a marker of lipid peroxidation. Analytical Biochemistry, 248, 76–85. DOI: 10.1006/abio.1997.2084. http://dx.doi.org/10.1006/abio.1997.208410.1006/abio.1997.2084Search in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins
Articles in the same Issue
- Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations
- Study of deoxynivalenol effect on metallothionein and glutathione levels, antioxidant capacity, and glutathione-S-transferase and liver enzymes activity in rats
- Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate
- Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D
- Electrodialysis of oxalic acid: batch process modeling
- Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing
- Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
- Fabrication of a micro-direct methanol fuel cell using microfluidics
- Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements
- Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites
- Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins