Home Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins
Article
Licensed
Unlicensed Requires Authentication

Assessment of role of rosmarinic acid in preventing oxidative process of low density lipoproteins

  • Andreia Tache EMAIL logo , Gabriel-Lucian Radu and Simona-Carmen Litescu
Published/Copyright: September 13, 2012
Become an author with De Gruyter Brill

Abstract

This study aimed to assess the antioxidant compound effects on oxidisable substrates, using an effective bio-mimetic system based on human low density lipoproteins (LDL). Thermally generated radicals induce LDL oxidative changes to be identified and quantified. The bio-mimetic system thus developed responded linearly to radicals’ concentration over a range of 10−6-10−5 mol L−1. Cu2+ accentuates lipoperoxidation but, when rosmarinic acid was present, Cu2+ produced an unexpected effect, i.e. increased antioxidant efficiency against lipoperoxidation. Rosmarinic acid inhibits production of lipoperoxides by up to 30 % in the absence of Cu2+ and up to 70 % in its presence when the rosmarinic acid-to-Cu molar ratio is 1: 1.

[1] Bagnati, M., Perugini, C., Cau, C., Bordone, R., Albano, E., & Bellomo, G. (1999). When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical Journal, 340, 143–152. http://dx.doi.org/10.1042/0264-6021:340014310.1042/bj3400143Search in Google Scholar

[2] Dimitros, B. (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17, 505–512. DOI: 10.1016/j.tifs.2006.04.004. http://dx.doi.org/10.1016/j.tifs.2006.04.00410.1016/j.tifs.2006.04.004Search in Google Scholar

[3] Fan, C., Liu, X., Pang, J., Li, G., & Scheer, H. (2004). Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Analytica Chimica Acta, 523, 225–228. DOI: 10.1016/j.aca.2004.07.038. http://dx.doi.org/10.1016/j.aca.2004.07.03810.1016/j.aca.2004.07.038Search in Google Scholar

[4] Firth, C. A., Crone, E. M., Flavall, E. A., Roake, J. A., & Gieseg, S. P. (2008). Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin. Biochimica et Biophysica Acta — Molecular Cell Research, 1783, 1095–1101. DOI: 10.1016/j.bbamcr.2008.02.010. http://dx.doi.org/10.1016/j.bbamcr.2008.02.01010.1016/j.bbamcr.2008.02.010Search in Google Scholar

[5] Gutteridge, J. M. C. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41, 1819–1828. 10.1093/clinchem/41.12.1819Search in Google Scholar

[6] Halliwell, B. (2009). The wandering of a free radical. Free Radical Biology and Medicine, 46, 531–542. DOI: 10.1016/j.freeradbiomed.2008.11.008. http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.00810.1016/j.freeradbiomed.2008.11.008Search in Google Scholar

[7] Halliwell, B., & Gutteridge, J. M. C. (2007). Free radicals in biology and medicine (4th ed., pp. 502–505). New York, NY, USA: Oxford University Press. Search in Google Scholar

[8] Khaki, A., Imani, S. A. M., & Golzar, F. S. (2012). Effects of rosmarinic acid on male sex hormones (testosterone-FSHLH) and testis tissue apoptosis after exposure to electromagnetic field (EMF) in rats. African Journal of Pharmacy and Pharmacology, 6, 248–252. DOI: 10.5897/ajpp11.701. 10.5897/AJPP11.701Search in Google Scholar

[9] Kinter, M. (1995). Analytical technologies for lipid oxidation products analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 671, 223–236. DOI: 10.1016/0378-4347(95)00189-p. http://dx.doi.org/10.1016/0378-4347(95)00189-P10.1016/0378-4347(95)00189-PSearch in Google Scholar

[10] Kovatcheva-Apostolova, E. G., Georgiev, M. I., Ilieva, M. P., Skibsted, L. H., Rødtjer, A., & Andersen, M. L. (2008). Extracts of plant cell cultures of Lavandula vera and Rosa damascene as sources of phenolic antioxidants for use in foods. European Food Research and Technology, 227, 1243–1249. DOI: 10.1007/s00217-008-0842-x. http://dx.doi.org/10.1007/s00217-008-0842-x10.1007/s00217-008-0842-xSearch in Google Scholar

[11] Litescu, S. C., Cioffi, N., Sabbatini, L., & Radu, G. L. (2002). Study of phenol-like compounds antioxidative behavior on low-density lipoprotein gold modified electrode. Electroanalysis, 14, 858–865. DOI: 10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U. http://dx.doi.org/10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-U10.1002/1521-4109(200206)14:12<858::AID-ELAN858>3.0.CO;2-USearch in Google Scholar

[12] Litescu, S. C., Tache, A., Eremia, S. A.M., Albu, C., & Radu, G. L. (2010). Electrochemical evaluation of polyphenols preservative effect against lipoperoxidation. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 72, 67–74. Search in Google Scholar

[13] Monk, P. M. S. (2001). Fundamentals of electroanalytical chemistry (pp. 156–175). Chichester, UK: Wiley. Search in Google Scholar

[14] Murakami, K., Haneda, M., Qiao, S., Naruse, M., & Yoshino, M. (2007). Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species. Toxicology in Vitro, 21, 613–617. DOI: 10.1016/j.tiv.2006.12.005. http://dx.doi.org/10.1016/j.tiv.2006.12.00510.1016/j.tiv.2006.12.005Search in Google Scholar

[15] Pastor, I., Esquembre, R., Micol, V., Mallavia, R., & Mateo, M. R. (2004). A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol-gel glasses. Analytical Biochemistry, 334, 335–343. DOI: 10.1016/j.ab.2004.08.012. http://dx.doi.org/10.1016/j.ab.2004.08.01210.1016/j.ab.2004.08.012Search in Google Scholar

[16] Prouillac, C., Vicendo, P., Garrigues, J. C., Poteau, R., & Rima, R. (2009). Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radical Biology and Medicine, 46, 1139–1148. DOI: 10.1016/j.freeradbiomed.2009.01.016. http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.01610.1016/j.freeradbiomed.2009.01.016Search in Google Scholar

[17] Rea, G., Antonacci, A., Lambreva, M., Pastorelli, S., Tibuzzi, A., Ferrari, S., Fischer, D., Johanningmeier, U., Oleszek, W., Doroszewska, T., Rizzo, A. M., Berselli, P. V. R., Berra, B., Bertoli, A., Pistelli, L., Ruffoni, B., Calas-Blanchard, C., Marty, J. L., Litescu, S. C., Diaconu, M., Touloupakis, E., Ghaanotakis, D., & Giardi, M. T. (2011). Integrated plant biotechnologies applied to safer and healtier food production: The Nutra-Snack manufacturilg chain. Trends in Food & Technology, 22, 353–366. DOI: 10.1016/j.tifs.2011.04.005. http://dx.doi.org/10.1016/j.tifs.2011.04.00510.1016/j.tifs.2011.04.005Search in Google Scholar

[18] Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S–217S. 10.1093/ajcn/81.1.215SSearch in Google Scholar

[19] Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A. R., & Hamedani, M. P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacognosy Magazine, 8(29), 37–41. DOI: 10.4103/0973-1296.93316. http://dx.doi.org/10.4103/0973-1296.9331610.4103/0973-1296.93316Search in Google Scholar

[20] Tache, A., Cotrone, S., Litescu, S. C., Cioffi, N., Torsi, L., Sabbatini, L., & Radu, G. L. (2011a). Spectrochemical characterization of thin layers of lipoprotein self-assembled films on solid supports under oxidation process. Analytical Letters, 44, 747–760. DOI: 10.1080/00032711003790098. http://dx.doi.org/10.1080/0003271100379009810.1080/00032711003790098Search in Google Scholar

[21] Tache, A., Litescu, S. C., & Radu, L. G. (2011b). Spectroscopic studies on lipoprotein structure modification under oxidative stress. Spectroscopy, 26, 167–178. DOI: 10.3233/spe-2011-0533. Search in Google Scholar

[22] Tallineau, C., Pontcharraud, R., Guettier, A., & Piriou, A. (1992). Cu(2+)-induced lipid oxidation in plasma: questionable relation between cholesterol oxidation and LDL modification. Biochemistry International, 27, 983–990. Search in Google Scholar

[23] Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009. http://dx.doi.org/10.1016/j.cbi.2005.12.00910.1016/j.cbi.2005.12.009Search in Google Scholar

[24] Volin, P. (2001). Analysis of steroidal lipids by gas and liquid chromatography. Journal of Chromatography A, 935, 125–140. DOI: 10.1016/s0021-9673(01)01089-5. http://dx.doi.org/10.1016/S0021-9673(01)01089-510.1016/S0021-9673(01)01089-5Search in Google Scholar

[25] Wilson, R., Smith, R., Wilson, P., Shepherd, M. J., & Riemersma, R. A. (1997). Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxyl fatty acids in biological samples and food as a marker of lipid peroxidation. Analytical Biochemistry, 248, 76–85. DOI: 10.1006/abio.1997.2084. http://dx.doi.org/10.1006/abio.1997.208410.1006/abio.1997.2084Search in Google Scholar PubMed

Published Online: 2012-9-13
Published in Print: 2012-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0233-4/pdf
Scroll to top button