Home Life Sciences Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes
Article
Licensed
Unlicensed Requires Authentication

Improved hydrothermal synthesis of MoS2 sheathed carbon nanotubes

  • Jaciel Robles-Nuñez EMAIL logo , Fernando Chiñas-Castillo , Manuel Sanchez-Rubio , Javier Lara-Romero , Rafael Huirache-Acuña , Sergio Jimenez-Sandoval and Gabriel Alonso-Nuñez
Published/Copyright: September 13, 2012
Become an author with De Gruyter Brill

Abstract

MoS2 sheathed carbon nanotubes have been successfully synthesized using a hydrothermal route under controlled conditions. The resultant material was studied by XRD, EDS, HRTEM, and Raman spectroscopy. Advantages of the preparation presented here compared to other methods are: a) lower reaction temperature, b) high yield of sheathed nanotubes including ends and full body, c) simple process with non-toxic materials, and d) no damage inflicted to nanotubes.

[1] Ajayan, P. M., Schadler, L. S., Giannaris, C., & Rubio, A. (2000). Single-walled carbon nanotube-polymer composites: Strength and weakness. Advanced Materials, 12, 750–753. DOI: 10.1002/(SICI)1521-4095(200005)12:10〈750::AIDADMA750〉3.0.CO;2-6. http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-610.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6Search in Google Scholar

[2] Byrappa, K., & Yoshimura, M. (2001). Handbook of hydrothermal technology. Park Ridge, NJ, USA: Noyes Publications. Search in Google Scholar

[3] Chang, C. H., & Chan, S. S. (1981). Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. Journal of Catalysis, 72, 139–148. DOI: 10.1016/0021-9517(81)90085-3. http://dx.doi.org/10.1016/0021-9517(81)90085-310.1016/0021-9517(81)90085-3Search in Google Scholar

[4] Chen, C. S., Chen, X. H., Hu, J., Zhang, H., Li, W. H., Xu, L. S., & Yang, Z. (2005). Effect of multi-walled carbon nanotubes on tribological properties of lubricant. Transactions of Nonferrous Metals Society of China, 15, 300–305. Search in Google Scholar

[5] Cheng, H. M., Yang, Q. H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39, 1447–1454. DOI: 10.1016/s0008-6223(00)00306-7. http://dx.doi.org/10.1016/S0008-6223(00)00306-710.1016/S0008-6223(00)00306-7Search in Google Scholar

[6] Hsu, W. K., Zhu, Y. Q., Kroto, H. W., Walton, D. R. M., Kamalakaran, R., & Terrones, M. M. (2000). C-MoS2 and C-WS2 nanocomposites. Applied Physics Letters, 77, 4130–4132. DOI: 10.1063/1.1329326. http://dx.doi.org/10.1063/1.132932610.1063/1.1329326Search in Google Scholar

[7] Jarvis, S. P., Uchihashi, T., Ishida, T., Tokumoto, H., & Nakayama, Y. (2000). Local solvation shell measurement in water using a carbon nanotube probe. Journal of Physical Chemistry B, 104, 6091–6094. DOI: 10.1021/jp001616d. http://dx.doi.org/10.1021/jp001616d10.1021/jp001616dSearch in Google Scholar

[8] Jiménez-Sandoval, S., Yang, D., Frindt, R. F., & Irwin, J. C. (1991). Raman study and lattice dynamics of single molecular layers of MoS2. Physical Review B, 44, 3955–3962. DOI: 10.1103/PhysRevB.44.3955. http://dx.doi.org/10.1103/PhysRevB.44.395510.1103/PhysRevB.44.3955Search in Google Scholar

[9] Ko, F. H., Lee, C. Y., Ko, C. J., & Chu, T. C. (2005). Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon, 43, 727–733. DOI: 10.1016/j.carbon.2004.10.042. http://dx.doi.org/10.1016/j.carbon.2004.10.04210.1016/j.carbon.2004.10.042Search in Google Scholar

[10] Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J., & Dai, H. J. (2000). Nanotube molecular wires as chemical sensors. Science, 287, 622–625. DOI: 10.1126/science. 287.5453.622. http://dx.doi.org/10.1126/science.287.5453.62210.1126/science.287.5453.622Search in Google Scholar

[11] Koroteev, V. O., Bulusheva, L.G., Asanov, I. P., Shlyakhova, E. V., Vyalikh, D. V., & Okotrub, A. V. (2011). Charge transfer in the MoS2/carbon nanotube composite. Journal of Physical Chemistry C, 115, 21199–21204. DOI: 10.1021/jp205939e. http://dx.doi.org/10.1021/jp205939e10.1021/jp205939eSearch in Google Scholar

[12] Liang, K. S., Chianelli, R. R., Chien, F. Z., & Moss, S. C. (1986). Structure of poorly crystalline MoS2 — A modeling study. Journal of Non-Crystalline Solids, 79, 251–273. DOI: 10.1016/0022-3093(86)90226-7. http://dx.doi.org/10.1016/0022-3093(86)90226-710.1016/0022-3093(86)90226-7Search in Google Scholar

[13] Liu, Z. L., Lin, X. H., Lee, J.Y., Zhang, W. D., Han, M., & Gan, L. M. (2002). Preparation and characterization of platinumbased electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir, 18, 4054–4060. DOI: 10.1021/la0116903. http://dx.doi.org/10.1021/la011690310.1021/la0116903Search in Google Scholar

[14] Niederberger, M., Muhr, H. J., Krumeich, F., Bieri, F., Günther, D., & Nesper, R. (2000). Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chemistry of Materials, 12, 1995–2000. DOI: 10.1021/cm001028c. http://dx.doi.org/10.1021/cm001028c10.1021/cm001028cSearch in Google Scholar

[15] Peng, Y. Y., Meng, Z. Y., Zhong, C., Lu, J., Yu, W. C., Yang, Z. P., & Qian, Y. T. (2001). Hydrothermal synthesis of MoS2 and its pressure-related crystallization. Journal of Solid State Chemistry, 159, 170–173. DOI: 10.1006/jssc.2001.9146. http://dx.doi.org/10.1006/jssc.2001.914610.1006/jssc.2001.9146Search in Google Scholar

[16] Peng, Y. T., Hu, Y. Z., & Wang, H. (2007). Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters, 25, 247–253. DOI: 10.1007/s11249-006-9176-7. http://dx.doi.org/10.1007/s11249-006-9176-710.1007/s11249-006-9176-7Search in Google Scholar

[17] Satio, Y., Hamaguchi, K., Hata, T., Tohji, K., Kasuya, A., & Nishina, Y. (1997). Field emission patterns from single-walled carbon nanotubes. Japanese Journal of Applied Physics Part 2, 36, L1340–L1342. DOI: 10.1143/JJAP.36.L1340. http://dx.doi.org/10.1143/JJAP.36.L134010.1143/JJAP.36.L1340Search in Google Scholar

[18] Song, X. C., Xu, Z. D., Zheng, Y. F., Han, G., Liu, B., & Chen, W. X. (2004). Molybdenum disulfide sheathed carbon nanotubes. Chinese Chemical Letters, 15, 623–626. Search in Google Scholar

[19] Tenne, R., Margulis, L., Genut, M., & Hodes, G. (1992). Polyhedral and cylindrical structures of tungsten disulphide. Nature, 360, 444–446. DOI: 10.1038/360444a0. http://dx.doi.org/10.1038/360444a010.1038/360444a0Search in Google Scholar

[20] Tian, Y., He, Y., & Zhu, Y. F. (2004). Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Materials Chemistry and Physics, 87, 87–90. DOI: 10.1016/j.matchemphys.2004.05.010. http://dx.doi.org/10.1016/j.matchemphys.2004.05.01010.1016/j.matchemphys.2004.05.010Search in Google Scholar

[21] Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C., & Yan, Y. S. (2004). Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 4, 345–348. DOI: 10.1021/nl034952p. http://dx.doi.org/10.1021/nl034952p10.1021/nl034952pSearch in Google Scholar

[22] Weber, T., Muijsers, J. C., & Niemantsverdriet, J. W. (1995). Structure of amorphous MoS3. Journal of Physical Chemistry, 99, 9194–9200. DOI: 10.1021/j100022a037. http://dx.doi.org/10.1021/j100022a03710.1021/j100022a037Search in Google Scholar

[23] Whitby, R. L. D., Hsu, W. K., Fearon, P. K., Billingham, N. C., Maurin, I., Kroto, H. W., Walton, D. R. M., Boothroyd, C. B., Firth, S., Clark, R. J. H., & Collison, D. (2002). Multiwalled carbon nanotubes coated with tungsten disulfide. Chemistry of Materials, 14, 2209–2217. DOI: 10.1021/cm011282k. http://dx.doi.org/10.1021/cm011282k10.1021/cm011282kSearch in Google Scholar

[24] Windom, B. C., Sawyer, W. G., & Hahn, D. W. (2011). A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribology Letters, 42, 301–310. DOI: 10.1007/s11249-011-9774-x. http://dx.doi.org/10.1007/s11249-011-9774-x10.1007/s11249-011-9774-xSearch in Google Scholar

[25] Zhang, H. B., Lin, G. D., Zhou, Z. H., Dong, X., & Chen, T. (2002). Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon, 40, 2429–2436. DOI: 10.1016/s0008-6223(02)00148-3. http://dx.doi.org/10.1016/S0008-6223(02)00148-310.1016/S0008-6223(02)00148-3Search in Google Scholar

[26] Zhou, W., Ooi, Y. H., Russo, R., Papanek, P., Luzzi, D. E., Fisher, J. E., Bronikowski, M. J., Willis, P. A., & Smalley, R. E. (2001). Structural characterization and diameter-depend oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chemical Physics Letters, 350, 6–14. DOI: 10.1016/s0009-2614(01)01237-4. http://dx.doi.org/10.1016/S0009-2614(01)01237-410.1016/S0009-2614(01)01237-4Search in Google Scholar

Published Online: 2012-9-13
Published in Print: 2012-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0227-2/pdf?lang=en
Scroll to top button