Startseite Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts

  • Katarína Kráľová EMAIL logo , František Šeršeň , Matúš Peško , Věra Klimešová und Karel Waisser
Veröffentlicht/Copyright: 19. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by nineteen 2-benzylsulphanylbenzimidazoles (BZA) was studied. BZA were found to inhibit photosynthetic electron transport (PET) and for their inhibitory efficiency, electronic properties of the R substituent on the benzyl moiety are decisive. The PET inhibiting activity of the studied BZA expressed as IC50 varied in the range from 28.5 μM (R = 3,5-(CF3)2) to 394.5 μM (R = 2,4-(NO2)2). For compounds with R = H, 4-CH3, 3-CH3, 3-OCH3, 4-F, 3-F, 4-Cl, 3-Cl, 2-Cl, 4-Br, 3-Br, 3,4-F2, 3,4-Cl2, 3-CF3, 3,5-(CF3)2 linear increase of the inhibitory activity with the increasing value of the substituent’s σ constant up to 0.86 was observed. Further increase of the σ constant resulted in a sharp activity decrease of the corresponding compounds (R = 2-F-6-Cl, 2-NO2, 3,5-(NO2)2, 2,4-(NO2)2). Using EPR spectroscopy and an artificial electron donor diphenyl carbazide it was found that the site of BZA action in the photosynthetic apparatus is situated on the donor side of PS 2, prior to the Z·/D· intermediate.

[1] Bocion, P. F., Cattanach, C. J., Eggenberg, P., Gressel, J., Hagmann, M. L., Malkin, S., & Wenger, J. (1987). Synthesis and characterization of a group of dihydropyrimidobenzimidazole photosystem II herbicides. Pesticide Biochemistry and Physiology, 28, 75–84. DOI: 10.1016/0048-3575(87)90115-5. http://dx.doi.org/10.1016/0048-3575(87)90115-510.1016/0048-3575(87)90115-5Suche in Google Scholar

[2] Burton, D. E., Lambie, A. J., Ludgate, J. C. L., Newbold, G. T., Percival, A., & Saggers, D. T. (1965). 2-Trifluoromethylbenzimidazoles: a new class of herbicidal compounds. Nature, 208, 1166–1170. DOI: 10.1038/2081166a0. http://dx.doi.org/10.1038/2081166a010.1038/2081166a0Suche in Google Scholar

[3] Dane, F., & Dalgiç, Ö. (2005). The effects of fungicide benomyl (benlate) on growth and mitosis in onion (Allium cepa L.) root apical meristem. Acta Biologica Hungarica, 56, 119–128. DOI: 10.1556/ABiol.56.2005.1-2.12. http://dx.doi.org/10.1556/ABiol.56.2005.1-2.1210.1556/ABiol.56.2005.1-2.12Suche in Google Scholar

[4] Garcia, P. C., Rivero, R. M., López-Lefebre, L. R., Sánchez, E., Ruiz, J. M., & Romero, L. (2001). Direct action of the biocide carbendazim on phenolic metabolism in tobacco plants. Journal of Agricultural and Food Chemistry, 49, 131–137. DOI: 10.1021/jf000850y. http://dx.doi.org/10.1021/jf000850y10.1021/jf000850ySuche in Google Scholar

[5] Hoff, A. J. (1979). Application of ESR in photosynthesis. Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79) 90016-4. http://dx.doi.org/10.1016/0370-1573(79)90016-410.1016/0370-1573(79)90016-4Suche in Google Scholar

[6] Jampilek, J., Musiol, R., Finster, J., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., O’Mahony, J., Coffey, A., Dohnal, J., & Polanski, J. (2009). Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules, 14, 4246–4265. DOI: 10.3390/molecules14104246. http://dx.doi.org/10.3390/molecules1410424610.3390/molecules14104246Suche in Google Scholar

[7] Klimešová, V., Kočí, J., Pour, M., Stachel, J., Waisser, K., & Kaustová, J. (2002). Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents. European Journal of Medicinal Chemistry, 37, 409–418. DOI: 10.1016/s0223-5234(02)01342-9. http://dx.doi.org/10.1016/S0223-5234(02)01342-910.1016/S0223-5234(02)01342-9Suche in Google Scholar

[8] Kráľová, K., Miletín, M., & Doležal, M. (2001). IInhibition of oxygen evolution rate in freshwater algae Chlorella vulgaris by some anilides of substituted pyridine-4-carboxylic acids. Chemical Papers, 55, 251–253. Suche in Google Scholar

[9] Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K. (2011). 2-Alkylsulphanyl-4-pyridine-carbothioamides-inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris. Chemical Papers, 65, 909–912 DOI: 10.2478/s11696-011-0082-6. http://dx.doi.org/10.2478/s11696-011-0082-610.2478/s11696-011-0082-6Suche in Google Scholar

[10] Kráľová, K., Šeršeň, F., Miletín, M., & Doležal, M. (2002). Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chemical Papers, 56, 214–217. Suche in Google Scholar

[11] Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998). Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chemical Papers, 52, 52–55. Suche in Google Scholar

[12] Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers, 46, 348–350. Suche in Google Scholar

[13] Kráľová, K., Šeršeň, F., & Sidóová, E. (1993). Effect of 2-alkylthio-6-aminobenzothiazoles and their 6-N-substituted derivatives on photosynthesis inhibition in spinach chloroplasts. General Physiology and Biophysics, 12, 421–427 Suche in Google Scholar

[14] Norrington, F. E., Hyde, R. M., Williams, S. G., & Wotton, R. (1975). Physiochemical-activity relations in practice. 1. Rational and self-consistent data bank. Journal of Medicinal Chemistry, 18, 604–607. DOI: 10.1021/jm00240a016. http://dx.doi.org/10.1021/jm00240a01610.1021/jm00240a016Suche in Google Scholar PubMed

[15] Roh, K. S., Oh, M. J., Song, S. D., Chung, H. S., & Song, J. S. (2001). Influence of benomyl on photosynthetic capacity in soybean leaves. Biotechnolology and Bioprocess Engineering, 6, 100–106. http://dx.doi.org/10.1007/BF0293195410.1007/BF02931954Suche in Google Scholar

[16] Stefańska, Z., Gralewska, R., Starościak, B. J., & Kazimierczuk, Z. (1999). Antimicrobial activity of substituted azoles and their nucleosides. Pharmazie, 54, 879–884 Suche in Google Scholar

[17] Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Zeitschrift für Naturforschung, 46, 765–776. 10.1515/znc-1991-9-1008Suche in Google Scholar PubMed

[18] van Iersel, M. W., & Bugbee, B. (1996). Phytotoxic effects of benzimidazole fungicides on bedding plants. Journal of the American Society for Horticultural Science, 121, 1095–1102. 10.21273/JASHS.121.6.1095Suche in Google Scholar

[19] van Iersel, M. W., & Bugbee B. (1997). Dibutylurea reduces photosynthesis, growth and flowering of petunia and impatiens. Journal of the American Society for Horticultural Science, 122, 536–541. 10.21273/JASHS.122.4.536Suche in Google Scholar

Published Online: 2012-6-19
Published in Print: 2012-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0192-9/html?lang=de
Button zum nach oben scrollen