Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
Abstract
The present paper provides details of the preparation of polymeric tablets and microspheres based on piroxicam as a therapeutic active agent and the drug release study from these formulations. Tablets composed of ethylcellulose, Eudragit® or mixtures of Eudragit® and synthesised poly(oxepan-2-one) were prepared and tested. The effect of the matrix on the drug release at 37°C was studied. The drug-loaded microparticles were prepared using solvent evaporation microencapsulation. These systems were characterised by SEM and FTIR spectroscopy and the size and size distribution were also determined. The results demonstrated that the drug release could be modified by means of these formulations. Finally, piroxicam dissolution rate constants were calculated from Higuchi’s release model.
[1] Arshady, R. (1993). Microcapsules for food. Journal of Microencapsulation, 10, 413–435. DOI: 10.3109/0265dy2049309015320. http://dx.doi.org/10.3109/02652049309015320Suche in Google Scholar
[2] Belarbi, L., Boudouaia, N., & Mesli, A. (2009). Synthese et caracterisation de poly(ɛ-caprolactone) a partir d’ɛ-caprolactone et differents diacides. Physical and Chemical News, 46, 104–110. Suche in Google Scholar
[3] Casas, M., Ferrero, C., & Jiménez-Castellanos, M. R. (2010). Graft tapioca starch copolymers as novel excipients for controlled-release matrix tablets. Carbohydrate Polymers, 80, 71–77. DOI: 10.1016/j.carbpol.2009.10.065. http://dx.doi.org/10.1016/j.carbpol.2009.10.06510.1016/j.carbpol.2009.10.065Suche in Google Scholar
[4] Chung, T. W., Huang, Y. Y., & Liu, Y. Z. (2001). Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres. International Journal of Pharmaceutics, 212, 161–169. DOI: 10.1016/s0378-5173(00)00574-3. http://dx.doi.org/10.1016/S0378-5173(00)00574-310.1016/S0378-5173(00)00574-3Suche in Google Scholar
[5] De Brabander, C., Vervaet, C., & Remon, J. P. (2003). Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion. Journal of Controlled Release, 89, 235–247. DOI: 10.1016/s0168-3659(03)00075-0. http://dx.doi.org/10.1016/S0168-3659(03)00075-010.1016/S0168-3659(03)00075-0Suche in Google Scholar
[6] Duarte, A. R. C., Costa, M. S., Simplício, A. L., Cardoso, M. M., & Duarte, C. M. M. (2006). Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs. International Journal of Pharmaceutics, 308, 168–174. DOI: 10.1016/j.ijpharm.2005.11.012. http://dx.doi.org/10.1016/j.ijpharm.2005.11.01210.1016/j.ijpharm.2005.11.012Suche in Google Scholar
[7] El Bahri, Z., & Taverdet, J. L. (2007). Preparation and optimization of 2,4-D loaded cellulose derivatives microspheres by solvent evaporation technique. Journal of Applied Polymer Science, 103, 2742–2751. DOI: 10.1002/app.25488. http://dx.doi.org/10.1002/app.2548810.1002/app.25488Suche in Google Scholar
[8] Freiberg, S., & Zhu, X. X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics, 282, 1–18. DOI: 10.1016/j.ijpharm.2004.04.013. http://dx.doi.org/10.1016/j.ijpharm.2004.04.01310.1016/j.ijpharm.2004.04.013Suche in Google Scholar
[9] Fujimori, J., Yonemochi, E., Fukuoka, E., & Terada, K. (2002). Application of Eudragit RS to thermo-sensitive drug delivery systems. I. Thermo-sensitive drug release from acetaminophen matrix tablets consisting of Eudragit RS/PEG 400 blend polymers. Chemical & Pharmaceutical Bulletin, 50, 408–412. DOI: 10.1248/cpb.50.408. http://dx.doi.org/10.1248/cpb.50.40810.1248/cpb.50.408Suche in Google Scholar
[10] Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal Pharmaceutical Sciences, 52, 1145–1149. DOI: 10.1002/jps.2600521210. http://dx.doi.org/10.1002/jps.260052121010.1002/jps.2600521210Suche in Google Scholar
[11] Jain, V., Jain, D., & Singh, R. (2011). Factors affecting the morphology of eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. Journal of Pharmaceutical Sciences, 100, 1545–1552. DOI: 10.1002/jps.22360. http://dx.doi.org/10.1002/jps.2236010.1002/jps.22360Suche in Google Scholar
[12] Khan, M. A., & Reddy, I. K. (1997). Development of solid oral dosage forms with acrylate polymers. S.T.P Pharma Sciences, 7, 483–490. Suche in Google Scholar
[13] Kibbe, A. H. (2000). Handbook of pharmaceutical excipients. Washington, DC, USA: American Pharmaceutical Association. Suche in Google Scholar
[14] Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9. http://dx.doi.org/10.1016/0378-5173(83)90064-910.1016/0378-5173(83)90064-9Suche in Google Scholar
[15] Lai, M. K., & Tsiang, R. C. C. (2004). Encapsulating acetaminophen into poly(l-lactide) microcapsules by solvent evaporation technique in an O/W emulsion. Journal of Microencapsulation, 21, 307–316. DOI: 10.1080/02652040410001673928. http://dx.doi.org/10.1080/0265204041000167392810.1080/02652040410001673928Suche in Google Scholar
[16] Le Corre, P. Le Guevello, P., Gajan, V., Chevanne, F., & Le Verge, R. (1994). Preparation and characterization of bupivacaine-loaded polylactide and polylactide-co-glycolide microspheres. International Journal of Pharmaceutics, 107, 41–49, DOI: 10.1016/0378-5173(94)90300-X. http://dx.doi.org/10.1016/0378-5173(94)90300-X10.1016/0378-5173(94)90300-XSuche in Google Scholar
[17] Mao, Z., Wang, B., Ma, L., Gao, C., & Shen, J. (2007). The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 215–223. DOI: 10.1016/j.nano.2007.04.001. http://dx.doi.org/10.1016/j.nano.2007.04.00110.1016/j.nano.2007.04.001Suche in Google Scholar PubMed
[18] Moldenhauer, M. G., & Nairn, J. G. (1990). Formulation parameters affecting the preparation and properties of microencapsulated ion-exchanged resins containing theophylline. Journal of Pharmaceutical Sciences, 79, 659–666. DOI: 10.1002/jps.2600790802. http://dx.doi.org/10.1002/jps.260079080210.1002/jps.2600790802Suche in Google Scholar PubMed
[19] Mourão, S. C., da Silva, C., Bresolin, T. M. B., Serra, C. H. R., & Porta, V. (2010). Dissolution parameters for sodium diclofenac-containing hypromellose matrix tablet. International Journal of Pharmaceutics, 386, 201–207. DOI: 10.1016/j.ijpharm.2009.11.022. http://dx.doi.org/10.1016/j.ijpharm.2009.11.02210.1016/j.ijpharm.2009.11.022Suche in Google Scholar PubMed
[20] Musial, W., Kokol, V., & Voncina, B. (2010a). Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices. Chemical Papers, 64, 346–353. DOI: 10.2478/s11696-010-0013-y. http://dx.doi.org/10.2478/s11696-010-0013-y10.2478/s11696-010-0013-ySuche in Google Scholar
[21] Musial, W., Kokol, V., & Voncina, B. (2010b). Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures. Chemical Papers, 64, 84–90. DOI: 10.2478/s11696-009-0089-4. http://dx.doi.org/10.2478/s11696-009-0089-410.2478/s11696-009-0089-4Suche in Google Scholar
[22] Natarajan, V., Krithica, N., Madhan, B., & Sehgal, P. K. (2011). Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. Journal of Pharmaceutical Sciences, 100, 195–205. DOI: 10.1002/jps.22266. http://dx.doi.org/10.1002/jps.2226610.1002/jps.22266Suche in Google Scholar PubMed
[23] Patel, S. N., Prajapati, P. H., Patel, C. N., Patel, C. M., & Patel, T. D. (2010). Formulation and development of enteric coated tablets of prednisolone as colon targeted drug delivery. Journal of Global Pharma Technology, 2, 128–132. Suche in Google Scholar
[24] Phutane, P., Shidhaye, S., Lotlikar, V., Ghule, A., Sutar, S., & Kadam, V. (2010). In vitro evaluation of novel sustained release microspheres of glipizide prepared by the emulsion solvent diffusion-evaporation method. Pharmaceutics, 2, 35–41. DOI: 10.4103/0975-1483.62210. 10.4103/0975-1483.62210Suche in Google Scholar PubMed PubMed Central
[25] Piao, M. G., Yang, C. W., Li, D. X., Kim, J. O., Jang, K. Y., Yoo, B. K., Kim, J. A., Woo, J. S., Lyoo, W. S., Han, S. S, Lee, Y. B., Kim, D. D., Yong, C. S., & Choi, H. G. (2008). Preparation and in vivo evaluation of piroxicam-loaded gelatin microcapsule by spray drying technique. Biological and Pharmaceutical Bulletin, 31, 1284–1287. DOI: 10.1248/bpb.31.1284. http://dx.doi.org/10.1248/bpb.31.128410.1248/bpb.31.1284Suche in Google Scholar PubMed
[26] Prestwich, G. D., & Luo, Y. (2001). Novel biomaterials for drug delivery. Expert Opinion on Therapeutic Patents, 11, 1395–1410. DOI: 10.1517/13543776.11.9.1395. http://dx.doi.org/10.1517/13543776.11.9.139510.1517/13543776.11.9.1395Suche in Google Scholar
[27] Puthli, S., & Vavia, P. R. (2009). Stability studies of microparticulate system with piroxicam as model drug. AAPS Pharm-SciTech, 10, 872–880. DOI: 10.1208/s12249-009-9280-8. http://dx.doi.org/10.1208/s12249-009-9280-810.1208/s12249-009-9280-8Suche in Google Scholar
[28] Rajesh, N., & Siddaramaiah (2010). Design and evaluation of controlled release of piroxicam from the pellets of microcrystalline cellulose and hydroxypropylmethyl cellulose blends. International Journal of PharmTech Research, 2, 1465–1473. Suche in Google Scholar
[29] Rogalsky, V., & Todorov, I. N. (2012). Drug information portal. Retreived May 20, 2011, from http://www.druglib.com/druginfo/piroxicam/description_pharmacology/ Suche in Google Scholar
[30] Sahoo, S., Sasmal, A., Sahoo, D., & Nayak, P. (2010). Synthesis and characterization of chitosan-polycaprolactone blended with organoclay for control release of doxycycline. Journal of Applied Polymer Science, 118, 3167–3175. DOI: 10.1002/app.32474. http://dx.doi.org/10.1002/app.3247410.1002/app.32474Suche in Google Scholar
[31] Sastry, S. V., Nyshadham, J. R., & Fix, J. A. (2000). Recent technological advances in oral drug delivery — a review. Pharmaceutical Science & Technology Today, 3, 138–145. DOI: 10.1016/s1461-5347(00)00247-9. http://dx.doi.org/10.1016/S1461-5347(00)00247-910.1016/S1461-5347(00)00247-9Suche in Google Scholar
[32] Tsuji, K. (1998). Recent trends in pesticide formulations. In C. L. Foy, D. W. Pritchard, & G. B. Beestman (Eds.), Formulation Science: Proceedings from Formulation Forum’ 97 (pp. 53–83). Hattiesburg, MS, USA: The Association of Formulation Chemists. Suche in Google Scholar
[33] Vlaia, L., Vlaia, V., Miclea, L. M., Olariu, I., & Coneac, G. (2009). Topical W/O/W double emulsions of piroxicam: In vitro drug release study. Farmacia, 57, 639–647. Suche in Google Scholar
[34] Wade, A., & Weller, P. J. (1994) Handbook of pharmaceutical excipients (2nd ed.). Washington, DC, USA: Pharmaceutical Press. Suche in Google Scholar
[35] Wang, S. H., Zhang, L. C., Lin, F., Sa, X. Y., Zuo, J. B., Shao, Q. X., Chen, G. S., & Zeng, S. (2005). Controlled release of levonorgestrel from biodegradable poly(d,l-lactide-co-glycolide) microspheres: In vitro and in vivo studies. International Journal of Pharmaceutics, 301, 217–225. DOI: 10.1016/j.ijpharm.2005.05.038. http://dx.doi.org/10.1016/j.ijpharm.2005.05.03810.1016/j.ijpharm.2005.05.038Suche in Google Scholar PubMed
[36] Wen, H., & Park, K. (2010). Oral controlled release formulation design and drug delivery. New Jersey, NJ, USA: Wiley. http://dx.doi.org/10.1002/978047064048710.1002/9780470640487Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method
Artikel in diesem Heft
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method