Abstract
Environmentally acceptable lead-free ferroelectric KNbO3 (KN) or NaNbO3 (NN) and K0.5Na0.5NbO3 (KNN) thin films were prepared using a modified sol-gel method by mixing potassium acetate or sodium acetate or both with the Nb-tartrate complex, deposited on the Pt/Al2O3 and Pt/SiO2/Si substrates by a spin-coating method and sintered at 650°C. X-ray diffraction (XRD) analysis indicated that the NN and KNN films on the Pt/SiO2/Si substrate possessed a single perovskite phase, while NN and KNN films on the Pt/Al2O3 substrate contained a small amount of secondary pyrochlore phase, as did KN films on both substrates. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses confirmed that roughness R q of the thin KNN/Pt/SiO2/Si film (≈ 7.4 nm) was significantly lower than that of the KNN/Pt/Al2O3 film (≈ 15 nm). The heterogeneous microstructure composed of small spherical and larger needle-like or cuboidal particles were observed in the KN and NN films on both substrates. The homogeneous microstructure of the KNN thin film on the Pt/SiO2/Si substrate was smoother and contained finer spherical particles (≈ 50 nm) than on Pt/Al2O3 substrates (≈ 100 nm). The effect of different substrates on the surface morphology of thin films was confirmed.
[1] Ahn, C.W., Jeong, E. D., Lee, S. Y., Lee, H. J., Kang, S. H., & Kim, W. (2008). Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition. Applied Physics Letters, 93, 212905. DOI: 10.1063/1.3037214. http://dx.doi.org/10.1063/1.303721410.1063/1.3037214Suche in Google Scholar
[2] Aulika, I., Petzelt, J., Pokorny, J., Deyneka, A., Zauls, V., & Kundzins, K. (2007). Structural and optical studies of NaNbO3 thin films grown by PLD on SrRuO3 bottom electrode. Reviews on Advanced Materials Science, 15, 158–166. Suche in Google Scholar
[3] Braunschweig, B., Mitin, A., & Daum, W. (2011). Pt(111) thin-layer electrodes on α-Al2O3(0001): Morphology and atomic structure. Surface Science, 605, 1082–1089. DOI: 10.1016/j.susc.2011.03.009. http://dx.doi.org/10.1016/j.susc.2011.03.00910.1016/j.susc.2011.03.009Suche in Google Scholar
[4] Bruncková, H., Medvecky, Ľ., & Hvizdoš, P. (2011). Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films. Chemical Papers, 65, 682–690. DOI: 10.2478/s11696-011-0051-0. http://dx.doi.org/10.2478/s11696-011-0051-010.2478/s11696-011-0051-0Suche in Google Scholar
[5] Bruncková, H., Medvecky, Ľ., & Mihalik, J. (2008). Effect of sintering conditions on the pyrochlore phase content in PMN-PFN ceramics prepared by sol-gel process. Journal of the European Ceramic Society, 28, 123–131. DOI: 10.1016/j.jeurceramsoc.2007.09.026. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.09.02610.1016/j.jeurceramsoc.2007.09.026Suche in Google Scholar
[6] Chowdhury, A., Bould, J., Londesborough, M. G. S., & Milne, S. J. (2010a). Fundamental issues in the synthesis of ferroelectric Na0.5K0.5NbO3 thin films by sol-gel processing. Chemistry of Materials, 22, 3862–3874. DOI: 10.1021/cm903697j. http://dx.doi.org/10.1021/cm903697j10.1021/cm903697jSuche in Google Scholar
[7] Chowdhury, A., Bould, J., Londesborough, M. G. S., Večerníková, E., & Milne, S. J. (2010b). Evidence of phase heterogeneity in sol-gel Na0.5K0.5NbO3 system. Materials Chemistry and Physics, 124, 159–162. DOI: 10.1016/j.matchemphys.2010.06.009. http://dx.doi.org/10.1016/j.matchemphys.2010.06.00910.1016/j.matchemphys.2010.06.009Suche in Google Scholar
[8] Chowdhury, A., Bould, J., Zhang, Y., James, C., & Milne, S. J. (2010c). Nano-powders of Na0.5K0.5NbO3 made by a sol-gel method. Journal of Nanoparticle Research, 12, 209–215. DOI: 10.1007/s11051-009-9595-0. http://dx.doi.org/10.1007/s11051-009-9595-010.1007/s11051-009-9595-0Suche in Google Scholar
[9] Chowdhury, A., O’Callaghan, S., Skidmore, T. A., James, C., & Milne, S. J. (2009). Nanopowders of Na0.5K0.5NbO3 prepared by the Pechini method. Journal of the American Ceramic Society, 92, 758–761. DOI: 10.1111/j.1551-2916.2009.02950.x. http://dx.doi.org/10.1111/j.1551-2916.2009.02950.x10.1111/j.1551-2916.2009.02950.xSuche in Google Scholar
[10] Kang, C., Park, J. H., Shen, D., Ahn, H., Park, M., & Kim, D. J. (2011). Growth and characterization of (K0.5Na0.5) NbO3 thin films by sol-gel method. Journal of Sol-Gel Science and Technology, 58, 85–90. DOI: 10.1007/s10971-010-2359-6. http://dx.doi.org/10.1007/s10971-010-2359-610.1007/s10971-010-2359-6Suche in Google Scholar
[11] Katsumata, K., Cordonier, C. E. J., Shichi, T., & Fujishima, A. (2010). Effect of surface microstructures on photo-induced hydrophilicity of NaNbO3 thin films by sol-gel process. Materials Science and Engineering: B, 173, 267–270. DOI: 10.1016/j.mseb.2010.01.008. http://dx.doi.org/10.1016/j.mseb.2010.01.00810.1016/j.mseb.2010.01.008Suche in Google Scholar
[12] Lai, F., & Li, J. F. (2007). Sol-gel processing of lead-free (Na,K)NbO3 ferroelectric films. Journal of Sol-Gel Science and Technology, 42, 287–292. DOI: 10.1007/s10971-007-0741-9. http://dx.doi.org/10.1007/s10971-007-0741-910.1007/s10971-007-0741-9Suche in Google Scholar
[13] Lee, S. Y., Ahn, C. V., Kim, J. S., Ullah, A., Lee, H. J., Hwang, H. I., Choi, J. S., Park, B. H., & Kim, I. W. (2011). Enhanced piezoelectric properties of Ta substituted-(K0.5Na0.5) NbO3 films: A candidate for lead-free piezoelectric thin films. Journal of Alloys and Compounds, 509, L194–L198. DOI: 10.1016/j.jallcom.2011.03.031. http://dx.doi.org/10.1016/j.jallcom.2011.03.03110.1016/j.jallcom.2011.03.031Suche in Google Scholar
[14] Li, G., Kako, T., Wang, D., Zou, Z., & Ye, J. (2008). Synthesis and enhancened photocatalytic activity of NaNbO3 prepared by hydrothermal and polymerized complex methods. Journal of Physics and Chemistry of Solids, 69, 2487–2491. DOI: 10.1016/j.jpcs.2008.05.001. http://dx.doi.org/10.1016/j.jpcs.2008.05.00110.1016/j.jpcs.2008.05.001Suche in Google Scholar
[15] Nakashima, Y., Sakamoto, W., Maiwa, H., Shimura, T., & Yogo, T. (2007). Lead-free piezoelectric (K,Na)NbO3 thin films derived from metal alkoxide precursors. Japanese Journal of Applied Physics, 46, L311–L313. DOI: 10.1143/JJAP.46.L311. http://dx.doi.org/10.1143/JJAP.46.L31110.1143/JJAP.46.L311Suche in Google Scholar
[16] Röscher, M., Tappertzhofen, S., & Schneller, T. (2011). Precursor homogenity and crystallization effects in chemical solution deposition-derived alkaline niobate thin films. Journal of the American Ceramic Society, 94, 2193–2199. DOI: 10.1111/j.1551-2916.2010.04339.x. http://dx.doi.org/10.1111/j.1551-2916.2010.04339.x10.1111/j.1551-2916.2010.04339.xSuche in Google Scholar
[17] Saito, Y., Takao, H., Tani, T., Nonoyma, T., Takatori, K., Homma, T., Nagaya, T., & Nakamura, M. (2004). Lead-free piezoceramics. Nature, 432, 84–87. DOI: 10.1038/nature03028. http://dx.doi.org/10.1038/nature0302810.1038/nature03028Suche in Google Scholar PubMed
[18] Schroeter, C., Wessler, B., & Eng, L. M. (2007). High throughput method for K0.5Na0.5NbO3 thin films preparation by chemical solution deposition. Journal of the European Ceramic Society, 27, 3785–3788. DOI: 10.1016/j.jeurceramsoc.2007.02.033. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.03310.1016/j.jeurceramsoc.2007.02.033Suche in Google Scholar
[19] Shibata, K., Oka, F., Ohishi, A., Mishima, T., & Kanno, I. (2008). Piezoelectric properties of (K,Na)NbO3 films deposited by RF magnetron sputtering. Applied Physics Express, 1, 011501. DOI: 10.1143/apex.1.011501. http://dx.doi.org/10.1143/APEX.1.01150110.1143/APEX.1.011501Suche in Google Scholar
[20] Söderlind, F., Käll, P. O., & Helmersson, U. (2005). Sol-gel synthesis and characterization of Na0.5K0.5NbO3 thin films. Journal of Crystal Growth, 281, 468–474 DOI: 10.1016/j.jcrysgro.2005.04.044. http://dx.doi.org/10.1016/j.jcrysgro.2005.04.04410.1016/j.jcrysgro.2005.04.044Suche in Google Scholar
[21] Tanaka, K., Kakimoto, K., & Ohsato, H. (2006). Fabrication of highly oriented lead-free (Na,K)NbO3 thin films at low temperature by sol-gel process. Journal of Crystal Growth, 294, 209–213. DOI: 10.1016/j.jcrysgro.2006.05.041. http://dx.doi.org/10.1016/j.jcrysgro.2006.05.04110.1016/j.jcrysgro.2006.05.041Suche in Google Scholar
[22] Tanaka, K., Kakimoto, K., & Ohsato, H. (2007). Morphology and crystallinity of KNbO3-based nano powder fabricated by sol-gel process. Journal of the European Ceramic Society, 27, 3591–3595. DOI: 10.1016/j.jeurceramsoc.2007.02.070. http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.07010.1016/j.jeurceramsoc.2007.02.070Suche in Google Scholar
[23] Wang, L., Yao, K., & Ren, W. (2008). Piezoelectric K0.5Na0.5 NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition. Applied Physics Letters, 93, 092903. DOI: 10.1063/1.2978160. http://dx.doi.org/10.1063/1.297816010.1063/1.2978160Suche in Google Scholar
[24] Weber, I. T., Garel, M., Bouquet, V., Rousseau, A., Guilloux-Viry, M., Longo, E., & Perrin, A. (2005). Preparation of KNbO3 thin films onto alumina substrates by polymeric precursor method. Thin Solid Films, 493, 139–145. DOI: 10.1016/j.tsf.2005.08.008. http://dx.doi.org/10.1016/j.tsf.2005.08.00810.1016/j.tsf.2005.08.008Suche in Google Scholar
[25] Wei, S., Li, B., Fujimoto, T., & Kojima, I. (1998). Surface morphological modification of Pt thin films induced by growth temperature. American Physical Society, Physical Review B, 58, 3605–3608. DOI: 10.1103/PhysRevB.58.3605. 10.1103/PhysRevB.58.3605Suche in Google Scholar
[26] Wu, S. Y., Liu, X. Q., & Chen, X. M. (2010). Hydrothermal synthesis of NaNbO3 with low NaOH concentration. Ceramics International, 36, 871–877. DOI: 10.1016/j.ceramint.2009.11.006. http://dx.doi.org/10.1016/j.ceramint.2009.11.00610.1016/j.ceramint.2009.11.006Suche in Google Scholar
[27] Yamazoe, S., Miyoshi, Y., Hattori, T., Adachi, H., & Wada, T. (2010). Ferroelectric properties of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 thin films deposited on Pt/(001) MgO substrate by pulsed laser deposition. Japanese Journal of Applied Physics, 49, 09MA06. DOI: 10.1143/jjap.49.09MA06. http://dx.doi.org/10.1143/JJAP.49.09MA0610.1143/JJAP.49.09MA06Suche in Google Scholar
[28] Yan, X., Ren, W., Wu, X., Shi, P., & Yao, X. (2010). Lead-free (K,Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties. Journal of Alloys and Compounds, 508, 129–132. DOI: 10.1016/j.jallcom.2010.08.025. http://dx.doi.org/10.1016/j.jallcom.2010.08.02510.1016/j.jallcom.2010.08.025Suche in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method
Artikel in diesem Heft
- Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography
- Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties
- Synthesis of new dendritic antenna-like polypyridine ligands
- Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method
- Effect of substrate on phase formation and surface morphology of sol-gel lead-free KNbO3, NaNbO3, and K0.5Na0.5NbO3 thin films
- Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
- Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
- Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation
- Ethylcellulose, polycaprolactone, and eudragit matrices for controlled release of piroxicam from tablets and microspheres
- Spectroscopic investigation of interaction of 6-methoxyflavanone and its β-cyclodextrin inclusion complex with calf thymus DNA
- Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts
- Investigation of structure of milled wood and dioxane lignins of Populus nigra and Cupressus sempervirens using the DFRC method