Startseite Lebenswissenschaften Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel ammonium phosphinates containing peptide moiety: Synthesis, structure, and in vitro antimicrobial activity

  • Khodayar Gholivand EMAIL logo und Niloufar Dorosti
Veröffentlicht/Copyright: 19. Juni 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Five new ammonium phosphinates with formula [XC6H4NHC(O)NHP(O)YO]−[H2Y]+ (Y = N(CH3)(CH2C6H5), X = H (IV), CH3 (V), NO2 (VI); Y = NH(CH2C6H5), X = H (VII), NO2 (VIII)) were synthesised by the reaction of N-arylureidophoshoryl dichlorides with N-methylbenzylamine or benzylamine in the presence of an excess amount of the corresponding amine. All new compounds were characterised by NMR and IR spectral data and elemental analysis. Their antimicrobial activity was tested against some Gram-positive and Gram-negative bacteria and fungi. Compounds IV and VIII exhibited moderate activity in vitro against Bacillus subtilis. In addition, compound VIII moderately inhibited Pseudomonas aeruginosa. The crystal structure of benzylmethylammonium(3-phenylureido)(benzylmethylamino)phosphinate (IV) was also determined. This compound crystallises in the orthorhombic system.

[1] Asseline, U., Chassignol, M., Draus, J., Durand, M., & Maurizot, J. C. (2003). Synthesis and properties of oligo-2′-deoxyribonucleotides containing internucleotidic phosphoramidate linkages modified with pendant groups ending with either two amino or two hydroxyl functions. Bioorganic & Medicinal Chemistry, 11, 3499–3511. DOI: 10.1016/s0968-0896(03)00273-6. http://dx.doi.org/10.1016/S0968-0896(03)00273-610.1016/S0968-0896(03)00273-6Suche in Google Scholar

[2] Barry, A. L. (1976). The antimicrobic susceptibility test: Principles and practices. Philadelphia, PA, USA: Lea & Febiger. Suche in Google Scholar

[3] Corbridge, D. E. C. (1995). Phosphorus: An outline of its chemistry, biochemistry, and uses (5th ed.). Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar

[4] Dehghanpour, S., Welter, R., Barry, A. H., & Tabasi, F. (2010). Solid state and solution study of some phosphoramidate derivatives containing the P(O)NHC(O) bifunctional group: Crystal structures of CCl2HC(O)NHP(O)(NCH3(CH2 C6H5))2, p-ClC6H4C(O)NHP(O)(NCH3(CH2C6H5))2, CCl2 HC(O)NHP(O)(N(CH2C6H5)2)2 and p-BrC6H4C(O)NHP (O)(N(CH2C6H5)2)2. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1236–1243. DOI:10.1016/j.saa.2009.12.033. http://dx.doi.org/10.1016/j.saa.2009.12.03310.1016/j.saa.2009.12.033Suche in Google Scholar PubMed

[5] Dmochowska, B., Piosik, J., Woziwodzka, A., Sikora, K., Wiśniewski, A., & Węgrzyn, G. (2011). Mutagenicity of quaternary ammonium salts containing carbohydrate moieties. Journal of Hazardous Materials, 193, 272–278. DOI:10.1016/j.jhazmat.2011.07.064. http://dx.doi.org/10.1016/j.jhazmat.2011.07.06410.1016/j.jhazmat.2011.07.064Suche in Google Scholar PubMed

[6] Gholivand, K., Alizadehgan, A. M., Mojahed, F., Dehghan, G., Mohammadirad, A., & Abdollahi, M. (2008). Some new carbacylamidophosphates as inhibitors of acetylcholinestrase and butyrylcholinestrase. Zeitschrift für Naturforschung C, 63c, 241–250. 10.1515/znc-2008-3-414Suche in Google Scholar PubMed

[7] Gholivand, K., & Dorosti, N. (2011). Synthesis, spectroscopic characterization, crystal structures, theoretical studies, and antibacterial evaluation of two novel N-phosphinyl ureas. Monatshefte für Chemie, 142, 183–192. DOI: 10.1007/s00706-010-0436-8. http://dx.doi.org/10.1007/s00706-010-0436-810.1007/s00706-010-0436-8Suche in Google Scholar

[8] Gholivand, K., Dorosti, N., Ghaziany, F., Mirshahi, M., & Sarikhani, S. (2012). N-Phosphinyl ureas: Synthesis, characterization, X-ray structure, and in vitro evaluation of antitumor activity. Heteroatom Chemistry, 23, 74–83. DOI:10.1002/hc.20754. http://dx.doi.org/10.1002/hc.2075410.1002/hc.20754Suche in Google Scholar

[9] Gholivand, K., Dorosti, N., Shariatinia, Z., Ghaziany, F., Sarikhani, S., & Mirshahi, M. (2011). Cyclophosphamide analogues: synthesis, spectroscopic study, and antitumor activity of diazaphosphorinanes. Medicinal Chemistry Research, 20, 1287–1293. DOI: 10.1007/s00044-010-9466-3. http://dx.doi.org/10.1007/s00044-010-9466-310.1007/s00044-010-9466-3Suche in Google Scholar

[10] Gholivand, K., & Ghaziani, F. (2011). Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes. Chemical Papers, 65, 691–699. DOI:10.2478/s11696-011-0047-9. http://dx.doi.org/10.2478/s11696-011-0047-910.2478/s11696-011-0047-9Suche in Google Scholar

[11] Gholivand, K., Hosseini, Z., Farshadian, S., & Naderi-Manesh, H. (2010a). Synthesis, characterization, oxidative degradation, antibacterial activity and acetylcholinesterase/butyryl cholinesterase inhibitory effects of some new phosphorus(V) hydrazides. European Journal of Medicinal Chemistry, 45, 5130–5139. DOI: 10.1016/j.ejmech.2010.08.025. http://dx.doi.org/10.1016/j.ejmech.2010.08.02510.1016/j.ejmech.2010.08.025Suche in Google Scholar PubMed

[12] Gholivand, K., Mostaanzadeh, H., Koval, T., Dusek, M., Erben, M. F., Stoeckli-Evans, H., & Della Védova, C. O. (2010b). Syntheses, spectroscopic study and X-ray crystallography of some new phosphoramidates and lanthanide(III) complexes of N-(4-nitrobenzoyl)-N′,N″-bis(morpholino)phosphoric triamide. Acta Crystallographica Section B, B66, 441–450. DOI: 10.1107/s0108768110018550. 10.1107/S0108768110018550Suche in Google Scholar PubMed

[13] Gholivand, K., & Pourayoubi, M. (2004). Crystal structure of cyclohexyl-tert-butylammonium dichlorophosphate, (C10H20NH2)PCl2O2. Zeitschrift für Kristallographie — New Crystal Structures, 219, 314–316. Suche in Google Scholar

[14] Gholivand, K., Pourayoubi, M., Shariatinia, Z., & Molani, S. (2005a). Crystal structure of tert-butylammonium trifluoro acetyl-N-(tert-butylamino)dioxophosphate acetonitrile solvate hydrate (1:0.333:0.333), (C4H9NH3)[(F3C2ONH)(C4H9 NH)PO2)] · 0.333CH3CN · 0.333H2O. Zeitschrift für Kristallographie — New Crystal Structures, 220, 387–389. 10.1524/ncrs.2005.220.14.407Suche in Google Scholar

[15] Gholivand, K., Pourayoubi, M., Shariatinia, Z., & Mostaanzadeh, H. (2005b). The effect of various substituents on the structural parameters of the P(O)[N(CH3)(CH2C6H5)]2 moiety. Syntheses and spectroscopic characterization of some new phosphoramidates, crystal structures of P(O)(X) [N(CH3)(CH2C6H5)]2, X = C6 H5C(O)NH, Cl and CCl3C (O)NH. Polyhedron, 24, 655–662. DOI: 10.1016/j.poly.2005.01.010. http://dx.doi.org/10.1016/j.poly.2005.01.01010.1016/j.poly.2005.01.010Suche in Google Scholar

[16] Gholivand, K., Shariatinia, Z., & Pourayoubi, M. (2005c). 2J(P,C) and 3J(P,C) coupling constants in some new phosphoramidates. Crystal structures of CF3C(O)N(H)P(O) [N(CH3)(CH2C6H5)]2 and 4-NO2-C6H4N(H)P(O)[4-CH3-NC5H9]2. Zeitschrift für Anorganische und Allgemeine Chemie, 631, 961–967. DOI: 10.1002/zaac.200400517. http://dx.doi.org/10.1002/zaac.20040051710.1002/zaac.200400517Suche in Google Scholar

[17] Gholivand, K., Zare, K., Afshar, F., Shariatinia, Z., & Khavasi, H. R. (2007). 4-Carbamoylpyridinium dihydrogen phosphate. Acta Crystallographica Section E, E63, 04027. DOI:10.1107/s1600536807042869. http://dx.doi.org/10.1107/S160053680704286910.1107/S1600536807042869Suche in Google Scholar

[18] Gubina, K. E., Shatrava, J. A., Ovchynnikov, V. A., & Amirkhanov, V. M. (2000). Spectroscopic characterization of lanthanide complexes with N,N′-tetraethyl-N″-benzoylphosphoryltriamide. Crystal structure of tris(N,N′-tetraethyl-N″-benzoylphosphoryltriamide) cerium(III) trinitrate complex. Polyhedron, 19, 2203–2209. DOI: 10.1016/s0277-5387 (00)00526-x. Suche in Google Scholar

[19] Kolc, J. F., Swerdloff, M. D., Rogic, M. M., & Hendrickson, L. L. (1985). U.S. Patent No. 4517 003. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[20] Lukáč, M., Mojžiš, J., Mojžišová, G., Mrava, M., Ondriska, F., Valentová, J., Lacko, I., Bukovský, M., Devínsky, F., & Karlovská, J. (2009). Dialkylamino and nitrogen heterocyclic analogues of hexadecylphosphocholine and cetyltrimetylammonium bromide: Effect of phosphate group and environment of the ammonium cation on their biological activity. European Journal of Medicinal Chemistry, 44, 4970–4977. DOI:10.1016/j.ejmech.2009.08.011. http://dx.doi.org/10.1016/j.ejmech.2009.08.01110.1016/j.ejmech.2009.08.011Suche in Google Scholar

[21] Nagamune, H., Maeda, T., Ohkura, K., Yamamoto, K., Nakajima, M., & Kourai, H. (2000). Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicology in Vitro, 14, 139–147. DOI:10.1016/s0887-2333(00)00003-5. http://dx.doi.org/10.1016/S0887-2333(00)00003-510.1016/S0887-2333(00)00003-5Suche in Google Scholar

[22] Ouryupin, A. B., Kadyko, M. I., Petrovskii, P. V., & Fedin, E. I. (1995). Enantiomeric 2-anilino-2-oxo-1,3,2-oxazaphosphorinanes: Synthesis and NMR-investigation of their nonracemic mixtures. Tetrahedron: Asymmetry, 6, 1813–1824. DOI: 10.1016/0957-4166(95)00227-g. http://dx.doi.org/10.1016/0957-4166(95)00227-G10.1016/0957-4166(95)00227-GSuche in Google Scholar

[23] Papanastassiou, Z. B., & Bardos, T. J. (1962). Synthesis of pontential “dual antagonists” I. Some bis(1-aziridinyl)phophinyl carbamates and their structural analogs. Journal of Medicinal Chemistry, 5, 1000–1007. DOI: 10.1021/jm01240a013. http://dx.doi.org/10.1021/jm01240a01310.1021/jm01240a013Suche in Google Scholar

[24] Sheldrick, G. M. (1998a). SHELXTL, Version 5.10. An integrated system for soling, refining and displaying crystal structures from diffraction data. Madison, WI, USA: Bruker AXS. Suche in Google Scholar

[25] Sheldrick, G. M. (1998b). SADABS, Version 2.01. Bruker/Siemens area detector absorption correction program. Madison, WI, USA: Bruker AXS. Suche in Google Scholar

[26] Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J., & Domasevitch, K. V. (2005). Spectroscopic and crystal structure data of the alkali-, thallium(I) and onic-salts of dimethyl-N-trichloracetylamidophosphate. Polyhedron, 24, 1007–1014. DOI: 10.1016/j.poly.2005.01.023. http://dx.doi.org/10.1016/j.poly.2005.01.02310.1016/j.poly.2005.01.023Suche in Google Scholar

[27] Vincent, J. G., & Vincent, H.W. (1944). Filter paper disc modification of the Oxford cup penicilline determination. Proceedings of the Society for Experimental Biology and Medicine, 55, 162–164. 10.3181/00379727-55-14502Suche in Google Scholar

[28] Wan, H., & Modro, T. A. (1996). Preparation of acyclic and cyclic phosphoric triamides and diamido esters. Synthesis, 1996, 1227–1231. DOI: 10.1055/s-1996-4364. http://dx.doi.org/10.1055/s-1996-436410.1055/s-1996-4364Suche in Google Scholar

[29] Yazdanbakhsh, M., & Sabbaghi, F. (2007). N-Benzylpropan-2-aminium (benzylisopropylamido)(2,2,2-trifluoroacetamido) phosphate. Acta Crystallographica Section E, E63, o4318. DOI: 10.1107/s1600536807049586. http://dx.doi.org/10.1107/S160053680704958610.1107/S1600536807049586Suche in Google Scholar

[30] Zalán, Z., Martinek, T. A., Lázár, L., & Fülöp, F. (2003). Synthesis and conformational analysis of 1,3,2-diazaphosphorino [6,1-a]isoquinolines, a new ring system. Tetrahedron, 59, 9117–9125. DOI: 10.1016/j.tet.2003.09.062. http://dx.doi.org/10.1016/j.tet.2003.09.06210.1016/j.tet.2003.09.062Suche in Google Scholar

Published Online: 2012-6-19
Published in Print: 2012-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0177-8/pdf
Button zum nach oben scrollen