Startseite Lebenswissenschaften Utilisation of industrial waste for ferrite pigments production
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Utilisation of industrial waste for ferrite pigments production

  • Marián Schwarz EMAIL logo , Miloš Veverka , Eva Michalková , Vladimír Lalík und Darina Veverková
Veröffentlicht/Copyright: 29. Februar 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Preliminary results of research focused on the utilisation of specific waste from metallurgical and mining activities to obtain ferrite pigments are presented. As a source of iron in the spinel-type ferrites with the general structure MFe2O4 (where M is a bivalent metal such as Ca and Zn), three types of industrial wastes were used: metallurgical slag from the production of non-ferrous metals and two types of AMD (acid mine drainage) sludge: one of natural origin (Fe-sediment) and the second one synthetically prepared from AMD (Fe-precipitate). This waste was homogenised by ZnO and CaCO3 in various stoichiometric ratios n(Ca): n(Zn): n(Fe) and calcined at the temperature of 1000–1095°C. Mineralogical (XRD) analysis of the metallurgical slag pigments confirmed the formation of zinc ferrite and hematite only (Ca from reaction components entered into other phases). The ferric component of the AMD sludge (Fe-precipitate and Fe-sediment) formed a mixture of zinc ferrite, calcium ferrite, and hematite while increased calcination temperature supported the ferritic structure formation. Prepared pigments have no considerable colour differences; they were in brown colour tones. Pigments from the AMD sludge were more dark brown coloured than those from slag. Pigments were applied in an alkyd-resin paint and consequently basic anticorrosive tests were performed. Pigments obtained from metallurgical slag showed better anticorrosive properties than those from AMD. However, because of high Pb content in pigments from the slag (0.67–1.10 mass % Pb in pigments), utilisation of these pigments in coatings is problematic. Ferrite pigments from the AMD sludge, mainly that with zinc ferrite, have promising application in anticorrosive paints but optimisation of the preparation process is required.

[1] Abu Ayana, Y. M., El-Sawy, S. M., & Salah, S. H. (1997). Zinc-ferrite pigment for corrosion protection. Anti-Corrosion Methods and Materials, 44, 381–388. DOI: 10.1108/00035599710367681. http://dx.doi.org/10.1108/0003559971036768110.1108/00035599710367681Suche in Google Scholar

[2] Alleman, J. E. (1987). Beneficial use of sludge in building components. 1. Concept review and technical background. Interbrick, 3(2), 14–20. Suche in Google Scholar

[3] Allouache, A., Michalková, E., Veverka, M., & Veverková, D. (2009). Soil moisture variability and acid mine drainage in the spoil dump of pyritized hydroquartzite in the region of Banská Štiavnica, Slovakia. Carpathian Journal of Earth and Environmental Sciences, 4(2), 51–64. Suche in Google Scholar

[4] Andreola, F., Barbieri, L., Bondioli, F., Cannio, M., Ferrari, A. M., & Lancellotti, I. (2008). Synthesis of chromium containing pigments from chromium galvanic sludges. Journal of Hazardous Materials, 156, 466–471. DOI: 10.1016/j.jhazmat. 2007.12.075. http://dx.doi.org/10.1016/j.jhazmat.2007.12.07510.1016/j.jhazmat.2007.12.075Suche in Google Scholar

[5] Berchmans, L. J., Myndyk, M., Da Silva, K. L., Feldhoff, A., Šubrt, J., Heitjans, P., Becker, K. D., & Šepelák, V. (2010). A rapid one-step mechanosynthesis and characterization of nanocrystaline CaFe2O4 with orthorhombic structure. Journal of Alloys and Compounds, 500, 68–73. DOI: 10.1016/j.jallcom.2010.03.199. http://dx.doi.org/10.1016/j.jallcom.2010.03.19910.1016/j.jallcom.2010.03.199Suche in Google Scholar

[6] Berry, F. J., Costantini, N., & Smart, L. E. (2002). Synthesis of chromium-containing pigments from chromium recovered from leather waste. Waste Management, 22, 761–772. DOI: 10.1016/s0956-053x(01)00046-0. http://dx.doi.org/10.1016/S0956-053X(01)00046-010.1016/S0956-053X(01)00046-0Suche in Google Scholar

[7] Che, Y., Huang, W. H., Liu, D. M., Chen, J. Z., & Sun, Z. Y. (2006). Micro-goethite in percolated water from Fushui Reservoir in Hubei Province, China. Materials Science and Engineering: C, 26, 606–609. DOI: 10.1016/j.msec.2005.07.018. http://dx.doi.org/10.1016/j.msec.2005.07.01810.1016/j.msec.2005.07.018Suche in Google Scholar

[8] Chung, F. H. (1974a). Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525. DOI: 10.1107/s0021889874010375. http://dx.doi.org/10.1107/S002188987401037510.1107/S0021889874010375Suche in Google Scholar

[9] Chung, F. H. (1974b). Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of Xray diffraction analysis of mixtures. Journal of Applied Crystallography, 7, 526–531. DOI: 10.1107/s0021889874010387. http://dx.doi.org/10.1107/S002188987401038710.1107/S0021889874010387Suche in Google Scholar

[10] Cornell, R. M., & Schwertmann, U. (1996). The iron oxides: Structure, properties, reactions, occurrences and uses (pp. 349–374). Weinheim, Germany: VCH. Suche in Google Scholar

[11] Costa, G., Della, V. P., Ribeiro, M. J., Oliveira, A. P. N., Monrós, G., & Labrincha, J. A. (2008). Synthesis of black ceramic pigments from secondary raw materials. Dyes and Pigments, 77, 137–144. DOI: 10.1016/j.dyepig.2007.04.006. http://dx.doi.org/10.1016/j.dyepig.2007.04.00610.1016/j.dyepig.2007.04.006Suche in Google Scholar

[12] Czech Office for Standards, Metrology and Testing (1990). Czech standard: Measurement of colour. ČSN 01 1718. Prague, Czech Republic. Suche in Google Scholar

[13] Ettler, V., Legendre, O., Bodénan, F., & Touray, J. C. (2001). Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Příbram, Czech Republic. The Canadian Mineralogist, 39, 873–888. DOI: 10.2113/gscanmin.39.3.873. http://dx.doi.org/10.2113/gscanmin.39.3.87310.2113/gscanmin.39.3.873Suche in Google Scholar

[14] Goldie, B. (2001). Developments in formulating water-borne coatings. Journal of Protective Coatings and Linings, 18(9), 40–42. Suche in Google Scholar

[15] Hammarstrom, J. M., Seal, R. R., Meier, A. L., & Kornfeld, J. M. (2005). Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407–431. DOI: 10.1016/j.chemgeo.2004.06.053. http://dx.doi.org/10.1016/j.chemgeo.2004.06.05310.1016/j.chemgeo.2004.06.053Suche in Google Scholar

[16] Hedin, R. S. (2003). Recovery of marketable iron oxides from mine drainage in the USA. Land Contamination & Reclamation, 11, 93–98. DOI: 10.2462/09670513.802. http://dx.doi.org/10.2462/09670513.80210.2462/09670513.802Suche in Google Scholar

[17] International Organization for Standardization (1998). European standard: Paints and varnishes. Corrosion protection of steel structures by protective paint systems. Part 6: Laboratory performance test methods. EN ISO 12944-6. Geneva, Switzerland. Suche in Google Scholar

[18] Legodi, M. A., & de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, 74, 161–168. DOI: 10.1016/j.dyepig. 2006.01.038. http://dx.doi.org/10.1016/j.dyepig.2006.01.03810.1016/j.dyepig.2006.01.038Suche in Google Scholar

[19] Li, D. X., Gao, G. L., Meng, F. L., & Ji, C. (2008). Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. Journal of Hazardous Materials, 155, 369–377. DOI: 10.1016/j.jhazmat.2007.11.070. http://dx.doi.org/10.1016/j.jhazmat.2007.11.07010.1016/j.jhazmat.2007.11.070Suche in Google Scholar

[20] Kalendová, A. (2000). Alkalising and neutralising effects of anticorrosive pigments containing of Zn, Mg, Ca, and Sr cations. Progress in Organic Coatings, 38. 199–206. DOI: 10.1016/s0300-9440(00)00103-x. http://dx.doi.org/10.1016/S0300-9440(00)00103-X10.1016/S0300-9440(00)00103-XSuche in Google Scholar

[21] Kumpulainen, S., Carlson, L., & Räisänen, M. L. (2007). Seasonal variations of ochreous precipitates in mine effluents in Finland. Applied Geochemistry, 22, 760–777. DOI: 10.1016/j.apgeochem.2006.12.016. http://dx.doi.org/10.1016/j.apgeochem.2006.12.01610.1016/j.apgeochem.2006.12.016Suche in Google Scholar

[22] Lupa, L., Negrea, P., Iovi, A., Ciopec, M., & Muntean, C. (2007). The obtaining of iron red pigment from sludge resulted by spent acid neutralization. In Proceedings of the 3 rdInternational Conference on Life Cycle Management. From Analysis to Implementation, August 27–29, 2007. Zurich, Switzerland: ETH. Suche in Google Scholar

[23] Luxová, J. (2001). Speciální anorganické pigmenty. PhD. thesis, Univerzita Pardubice, Pardubice, Czech Republic. Suche in Google Scholar

[24] Luxová, J., Trojan, M., Šulcová, P., & Chaloupka, J. (2002). Syntéza oxidických antikorozních pigmentů z odpadních železitých kalů. CHEMagazín, XII(3), 8–10. Suche in Google Scholar

[25] Marcello, R. R., Galato, S., Peterson, M., Riella, H. G., & Bernardin, A. M. (2008). Inorganic pigments made from the recycling of coal mine drainage treatment sludge. Journal of Environmental Management, 88, 1280–1284. DOI: 10.1016/j.jenvman.2007.07.005. http://dx.doi.org/10.1016/j.jenvman.2007.07.00510.1016/j.jenvman.2007.07.005Suche in Google Scholar

[26] Šepelák, V., & Becker, K. D. (2003). Homogeneous reaction in spinels induced by high-energy milling. In P. Šajgalík, M. Drábik, & S. Varga (Eds.), Solid State Phenomena (Vol. 90–91, pp. 109–114). Durnten-Zurich, Switzerland: Scitec Publications. DOI: 0.4028/www.scientific.net/SSP.90-91.109. Suche in Google Scholar

[27] Sglavo, V. M., Maurina, S., Conci, A., Salviati, A., Carturan, G., & Cocco, G. (2000). Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. Journal of the European Ceramic Society, 20, 245–252. DOI: 10.1016/s0955-2219(99)00156-9. http://dx.doi.org/10.1016/S0955-2219(99)00156-910.1016/S0955-2219(99)00156-9Suche in Google Scholar

[28] Shen, L. Z., Qiao, Y. S., Guo, Y., & Tan, J. R. (2010). Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust. Journal of Hazardous Materials, 177, 495–500. DOI: 10.1016/j.jhazmat.2009.12.060. http://dx.doi.org/10.1016/j.jhazmat.2009.12.06010.1016/j.jhazmat.2009.12.060Suche in Google Scholar PubMed

[29] Shirsalkar, M. M., Muley, V. N., & Sivasamban, M. A. (1981). New anticorrosive pigments form iron oxide. Metal Finishing, 79(7), 57–60. Suche in Google Scholar

Published Online: 2012-2-29
Published in Print: 2012-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0154-2/pdf
Button zum nach oben scrollen