Startseite Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation

  • Yun-Ling Zou EMAIL logo , Yan Li , Jian-Gang Li und Wan-Jie Xie
Veröffentlicht/Copyright: 29. Februar 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we report on the preparation of momordica-like CuO nanostructures by the hydrothermal method using freshly extracted egg white protein (ovalbumin) in an aqueous medium. These momordica-like CuO nanostructures were characterised by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). XRD patterns showed that these nanostructures had a polycrystalline nature with a monoclinic structure. FE-SEM images indicated that the momordica-like CuO nanostructures obtained at 180°C for 15 h were composed of CuO nanorods with a length of less than 100 nm and a width ranging from 30 nm to 50 nm. Finally, a possible growth mechanism for the momordica-like CuO nanostructures is proposed and discussed.

[1] Anandan, S., Wen, X., & Yang, S. (2005). Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics, 93, 35–40. DOI: 10.1016/j.matchemphys.2005.02.002. http://dx.doi.org/10.1016/j.matchemphys.2005.02.00210.1016/j.matchemphys.2005.02.002Suche in Google Scholar

[2] Bansal, V., Poddar, P., Ahmad, A., & Sastry, M. (2006). Roomtemperature biosynthesis of ferroelectric barium titanate nanoparticles. Journal of the American Chemical Society, 128, 11958–11963. DOI: 10.1021/ja063011m. http://dx.doi.org/10.1021/ja063011m10.1021/ja063011mSuche in Google Scholar PubMed

[3] Boonchom, B., & Maensiri, S. (2009). Non-isothermal decomposition kinetics of NiFe2O4 anoparticles synthesized using egg white solution route. Journal of Thermal Analysis and Calorimetry, 97, 879–884. DOI: 10.1007/s10973-009-0173-6. http://dx.doi.org/10.1007/s10973-009-0173-610.1007/s10973-009-0173-6Suche in Google Scholar

[4] Cavalcante, L. S., Marques, V. S., Sczancoski, J. C., Escotec, M. T., Joya, M. R., Varela, J. A., Santos, M. R. M. C., Pizani, P. S., & Longo, E. (2008). Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. Chemical Engineering Journal, 143, 299–307. DOI: 10.1016/j.cej.2008.05.017. http://dx.doi.org/10.1016/j.cej.2008.05.01710.1016/j.cej.2008.05.017Suche in Google Scholar

[5] Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progess, 22, 577–583. DOI: 10.1021/bp0501423. http://dx.doi.org/10.1021/bp050142310.1021/bp0501423Suche in Google Scholar PubMed

[6] Dhara, S. (2005). Synthesis of nanocrystalline alumina using egg white. Journal of the American Ceramic Society, 88, 2003–2004. DOI: 10.1111/j.1551-2916.2005.00382.x. http://dx.doi.org/10.1111/j.1551-2916.2005.00382.x10.1111/j.1551-2916.2005.00382.xSuche in Google Scholar

[7] Dhara, S., & Bhargava, P. (2001). Egg white as an environmentally friendly low-cost binder for gelcasting of ceramics. Journal of the American Ceramic Society, 84, 3048–3050. DOI: 10.1111/j.1151-2916.2001.tb01137.x. http://dx.doi.org/10.1111/j.1151-2916.2001.tb01137.x10.1111/j.1151-2916.2001.tb01137.xSuche in Google Scholar

[8] Dhara, S., & Bhargava, P. (2003). A simple direct casting route to ceramic foams. Journal of the American Ceramic Society, 86, 1645–1650. DOI: 10.1111/j.1151-2916.2003.tb03534.x. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03534.x10.1111/j.1151-2916.2003.tb03534.xSuche in Google Scholar

[9] Faisal, M., Khan, S. B., Rahman, M. M., Jamal, A., & Umar, A. (2011). Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets. Materials Letters, 65, 1400–1403. DOI: 10.1016/j.matlet.2011.02.013. http://dx.doi.org/10.1016/j.matlet.2011.02.01310.1016/j.matlet.2011.02.013Suche in Google Scholar

[10] Gao, S., Yang, S., Shu, J., Zhang, S., Li, Z., & Jiang, K. (2008). Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 112, 19324–19328. DOI: 10.1021/jp808545r. http://dx.doi.org/10.1021/jp808545r10.1021/jp808545rSuche in Google Scholar

[11] Geng, B., Zhan, F., Jiang, H., Guo Y., & Xing, Z. (2008). Egg albumin as a nanoreactor for growing single-crystalline Fe3O4 nanotubes with high yields. Chemical Communications, 2008, 5773–5775. DOI: 10.1039/b813071j. http://dx.doi.org/10.1039/b813071j10.1039/b813071jSuche in Google Scholar PubMed

[12] Gu, A., Wang, G., Zhang, X., & Fang, B. (2010). Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bulletin of Materials Science, 33, 17–20. DOI: 10.1007/s12034-010-0002-3. http://dx.doi.org/10.1007/s12034-010-0002-310.1007/s12034-010-0002-3Suche in Google Scholar

[13] Hedström, M., Plieva, F., & Galaev, I. Y., & Mattiasson, B. (2008). Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization. Analytical and Bioanalytical Chemistry, 390, 907–912. DOI: 10.1007/s00216-007-1745-6. http://dx.doi.org/10.1007/s00216-007-1745-610.1007/s00216-007-1745-6Suche in Google Scholar PubMed

[14] Jang, K. S., & Kim, J. D. (2009). Facile and large-scale route to the fabrication of CuO nanosheets from a lamellar mesophase and their reversible self-assembly. Langmuir, 25, 6028–6031. DOI: 10.1021/la9009652. http://dx.doi.org/10.1021/la900965210.1021/la9009652Suche in Google Scholar PubMed

[15] Li-Chen, E., & Nakai, S. (1989). Biochemical basis for the properties of egg white. Critical Reviews in Poultry Biology, 2, 21–58. Suche in Google Scholar

[16] Liu, P., Huang, X., Li, Y., Sulieman, K. M., He, X., & Sun. F. (2006a). Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology. Crystal Growth & Design, 6, 1690–1696. DOI: 10.1021/cg060198k. http://dx.doi.org/10.1021/cg060198k10.1021/cg060198kSuche in Google Scholar

[17] Liu, Y., Chu, Y., Li, M., Li, L., & Dong, L. (2006b). In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process. Journal of Materials Chemsitry, 16, 192–198. DOI: 10.1039/b512481f. http://dx.doi.org/10.1039/b512481f10.1039/B512481FSuche in Google Scholar

[18] Lu, C., Qi, L., Yang, J., Zhang, D., Wu, N., & Ma, J. (2004). Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. The Journal of Physical Chemistry B, 108, 17825–17831. DOI: 10.1021/jp046772p. http://dx.doi.org/10.1021/jp046772p10.1021/jp046772pSuche in Google Scholar

[19] Maensiri, S., Masingboon, C., Boonchom, B., & Seraphin, S. (2007). A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Materialia, 56, 797–800. DOI: 10.1016/j.scriptamat.2006.09.033. http://dx.doi.org/10.1016/j.scriptamat.2006.09.03310.1016/j.scriptamat.2006.09.033Suche in Google Scholar

[20] Mao, C., Solis, D. J., Reiss, B. D., Kottmann, S. T., Sweeney, R. Y., Hayhurst, A., Georgiou, G., Iverson, B., & Belcher, A. M. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 303, 213–217. DOI: 10.1126/science.1092740. http://dx.doi.org/10.1126/science.109274010.1126/science.1092740Suche in Google Scholar PubMed

[21] Masingboon, C., Maensiri, S., Yamwong, T., Anderson, P. L., & Seraphin, S. (2008). Nanocrystalline CaCu3Ti4O12 powders prepared by egg white solution route: synthesis, characterization and its giant dielectric properties. Applied Physics A, 91, 87–95. DOI: 10.1007/s00339-007-4363-4. http://dx.doi.org/10.1007/s00339-007-4363-410.1007/s00339-007-4363-4Suche in Google Scholar

[22] Moura, A. P., Cavalcante, L. S., Sczancoski, J. C., Stroppa, D. G., Paris, E. C., Ramirez, A. J., Varela, J. A., & Longo, E. (2010). Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Advanced Powder Technology, 21, 197–202. DOI: 10.1016/j.apt.2009.11.007. http://dx.doi.org/10.1016/j.apt.2009.11.00710.1016/j.apt.2009.11.007Suche in Google Scholar

[23] Raksa, P., Gardchareon, A., Chairuangsri, T., Mangkorntong, P., Mangkorntong, N., & Choopun, S. (2009). Ethanol sensing properties of CuO nanowires preparedby an oxidation reaction. Ceramics International, 35, 649–652. DOI: 10.1016/j.ceramint.2008.01.028. http://dx.doi.org/10.1016/j.ceramint.2008.01.02810.1016/j.ceramint.2008.01.028Suche in Google Scholar

[24] Teng, F., Yao, W. Q., Zheng, Y. F., Ma, Y. T., Teng, Y., Xu, T. G., Liang, S. H., & Zhu, Y. F. (2008). Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sensors and Actuators B, 134, 761–768. DOI: 10.1016/j.snb.2008.06.023. http://dx.doi.org/10.1016/j.snb.2008.06.02310.1016/j.snb.2008.06.023Suche in Google Scholar

[25] Vadehra, D. V., Nath, K. R., & Forsythe, R. (1973). Eggs as a source of protein. CRC Critical Reviews in Food Technology, 4, 193–308. DOI: 10.1080/10408397309527158. 10.1080/10408397309527158Suche in Google Scholar

[26] Volanti, D. P., Keyson, D., Cavalcante, L. S., Simões, A. Z., Joya, M. R., Longo, E., Varela, J. A., Pizani, P. S., & Souza, A. G. (2008). Synthesis and characterization of CuO flowernanostructure processing by a domestic hydrothermal microwave. Journal of Alloys and Compounds, 459, 537–542. DOI: 10.1016/j.jallcom.2007.05.023. http://dx.doi.org/10.1016/j.jallcom.2007.05.02310.1016/j.jallcom.2007.05.023Suche in Google Scholar

[27] Wang, Z., Su, F., Madhavi, S., & Lou, X. W. (2011). CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale, 3, 1618–1623. DOI: 10.1039/c0nr00827c. http://dx.doi.org/10.1039/c0nr00827c10.1039/c0nr00827cSuche in Google Scholar PubMed

[28] Wen, X., Zhang, W., Yang, S., Dai, Z. R., & Wang, Z. L. (2002). Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. Nano Letters, 2, 1397–1401. DOI: 10.1021/nl025848v. http://dx.doi.org/10.1021/nl025848v10.1021/nl025848vSuche in Google Scholar

[29] Xia, J., Li, H., Luo, Z., Wang, K., Yin, S., & Yan, Y. (2010). Ionic liquid-assisted hydrothermal synthesis of threedimensional hierarchical CuO peachstone-like architectures. Applied Surface Science, 256, 1871–1877. DOI: 10.1016/j.apsusc.2009.10.022. http://dx.doi.org/10.1016/j.apsusc.2009.10.02210.1016/j.apsusc.2009.10.022Suche in Google Scholar

[30] Yang, L. X., Zhu, Y. J., Tong, H., Li, L., & Zhang, L. (2008). Multistep synthesis of CuO nanorod bundles and interconnected nanosheets using Cu2(OH)3Cl plates as precursor. Materials Chemistry and Physics, 112, 442–447. DOI: 10.1016/j.matchemphys.2008.05.071. http://dx.doi.org/10.1016/j.matchemphys.2008.05.07110.1016/j.matchemphys.2008.05.071Suche in Google Scholar

[31] Yang, Z., Xu, J., Zhang, W., Liu, A., & Tang, S. (2007). Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry, 180, 1390–1396. DOI: 10.1016/j.jssc.2007.02.008. http://dx.doi.org/10.1016/j.jssc.2007.02.00810.1016/j.jssc.2007.02.008Suche in Google Scholar

[32] Zhang, Y., Wang, S., Li, X., Chen, L., Qian, Y., Zhang, Z. (2006). CuO shuttle-like nanocrystals synthesized by oriented attachment. Journal of Crystal Growth, 291, 196–201. DOI: 10.1016/j.jcrysgro.2006.02.044. http://dx.doi.org/10.1016/j.jcrysgro.2006.02.04410.1016/j.jcrysgro.2006.02.044Suche in Google Scholar

[33] Zhu, J., & Qian, X. (2010). From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. Journal of Solid State Chemistry, 183, 1632–1639. DOI: 10.1016/j.jssc.2010.05.015. http://dx.doi.org/10.1016/j.jssc.2010.05.01510.1016/j.jssc.2010.05.015Suche in Google Scholar

Published Online: 2012-2-29
Published in Print: 2012-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0139-1/html?lang=de
Button zum nach oben scrollen