Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality
-
Mónica Chávez-González
, Juan Contreras-Esquivel
Abstract
Tannic acid is commonly employed as the main component in culture media for the selection of tannase-producing strains. In biotechnological processes it is the favorite substrate used to induce the tannase enzyme in both solid and submerged culture for microbial and/or enzymatic production of gallic acid. However, the results found in literature are inconsistent notwithstanding the strict control of all parameters that rule the bioprocesses. The present work, for the first time, reveals the importance of differences in the quality and chemical profile of tannic acid from different suppliers and their influence on the fungal and enzymatic hydrolytic pattern obtained when it is used as a substrate. A degree of hydrolysis between 64.7 % and 100 % has been determined in different tannic acid samples. The specific growth rate of 0.712 h−1, 0.792 h−1, 0.477 h−1, 0.536 h−1 for Jalmek®, Faga Lab®, Division Food®, and Riedel de Häen®, respectively, was obtained at the concentration of 80 g L−1 of each of the tannic acids.
[1] Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochemistry, 36, 565–570. DOI: 10.1016/s0032-9592(00)00251-x. http://dx.doi.org/10.1016/S0032-9592(00)00251-X10.1016/S0032-9592(00)00251-XSuche in Google Scholar
[2] Aguilar, C. N., & Gutiérrez-Sánchez, G. (2001). Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7, 373–382. DOI: 10.1106/69m3-b30k-cf7q-rj5g. 10.1106/69M3-B30K-CF7Q-RJ5GSuche in Google Scholar
[3] Aguilera-Carbo, A., Augur, C., Prado-Barragan, L. A., Favela-Torres, E., & Aguilar, C. N. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology, 78, 189–199. DOI: 10.1007/s00253-007-1276-2. http://dx.doi.org/10.1007/s00253-007-1276-210.1007/s00253-007-1276-2Suche in Google Scholar
[4] Banerjee, D., Mahapatra, S., & Pati, B. R. (2007). Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Research Journal of Microbiology, 2, 462–468. DOI: 10.3923/jm.2007.462.468. http://dx.doi.org/10.3923/jm.2007.462.46810.3923/jm.2007.462.468Suche in Google Scholar
[5] Banerjee, D., & Pati, B. R. (2007). Optimization of tannase production by Aureobasidium pullulans DBS66. Journal of Microbiology and Biotechnology, 17, 985–992. Suche in Google Scholar
[6] Belmares, R., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., Ramírez Coronel, A., & Aguilar, C. N. (2004). Microbial production of tannase: an enzyme with potential use in food industry. LWT-Food Science and Technology, 37, 857–864. DOI: 10.1016/j.lwt.2004.04.002. http://dx.doi.org/10.1016/j.lwt.2004.04.00210.1016/j.lwt.2004.04.002Suche in Google Scholar
[7] Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins — A current perspective. Biodegradation, 9, 343–357. DOI: 10.1023/a:1008397506963. http://dx.doi.org/10.1023/A:100839750696310.1023/A:1008397506963Suche in Google Scholar
[8] Bollen, W. B., & Lu, K. C. (1969). Douglas-fir bark tannin decomposition in two forest soils. Portland, OR, USA: Pacific Northwest Forest and Range Experiment station. Suche in Google Scholar
[9] Clarke, I. D., Rogers, J. S., Sievers, A. F., & Hopp, H. (1949). Tannin content and other characteristics of native sumac in relation to its value as a commercial source of tannin. Technical Bulletin of the United States Department of Agriculture, 986, 1–76. Suche in Google Scholar
[10] Cruz-Hernández, M., Contreras, J. C., Lima, N., Teixeira, J., & Aguilar, C. (2009). Production of Aspergillus niger GH1 tannase using solid-state fermentation. Journal of Pure and Applied Microbiology, 3, 21–26. Suche in Google Scholar
[11] Das Mohapatra, P. K., Mondal, K. C., & Pati, B. R. (2006). Production of tannase through submerged fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6. Polish Journal of Microbiology, 55, 297–301. Suche in Google Scholar
[12] Goldstein, J. L., & Swain, T. (1965). The inhibition of enzymes by tannins. Phytochemistry, 4, 185–192. DOI: 10.1016/s0031- 9422(00)86162-2. http://dx.doi.org/10.1016/S0031-9422(00)86162-210.1016/S0031-9422(00)86162-2Suche in Google Scholar
[13] Haslam, E. (1989). Plant polyphenols: vegetable tannins revisited. New York, NY, USA: Cambridge University Press. Suche in Google Scholar
[14] Khanbabaee, K., & van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18, 641–649. DOI: 10.1039/b101061l. http://dx.doi.org/10.1039/b101061l10.1039/b101061lSuche in Google Scholar
[15] Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: State of the art. Advances in Applied Microbiology, 44, 215–260. DOI: 10.1016/s0065-2164(08)70463-5. http://dx.doi.org/10.1016/S0065-2164(08)70463-510.1016/S0065-2164(08)70463-5Suche in Google Scholar
[16] Li, M., Yao, K., He, Q., & Jia, D. (2006). Biodegradation of gallotannins and ellagitannins. Journal Basic Microbiology, 46, 68–84. DOI: 10.1002/jobm.200510600. http://dx.doi.org/10.1002/jobm.20051060010.1002/jobm.200510600Suche in Google Scholar PubMed
[17] Li, W. W., Li, X. D., & Zeng, K. M. (2009). Aerobic biodegradation kinetics of tannic acid in activated sludge system. Biochemical Engineering Journal, 43, 142–148. DOI: 10.1016/j.bej.2008.09.010. http://dx.doi.org/10.1016/j.bej.2008.09.01010.1016/j.bej.2008.09.010Suche in Google Scholar
[18] Mata-Gómez, M., Rodríguez, L. V., Ramos, E. L., Renovato, J., Cruz-Hernández, M. A., Rodríguez, R., Contreras, J., & Aguilar, C. N. (2009). A novel tannase from the xerophilic fungus Aspergillus niger GH1. Journal of Microbiology and Biotechnology, 19, 987–996. DOI: 10.4014/jmb.1009.09041. http://dx.doi.org/10.4014/jmb.0811.61510.4014/jmb.1009.09041Suche in Google Scholar
[19] Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91, 3–20. DOI: 10.1016/s0377-8401(01)00227-9. http://dx.doi.org/10.1016/S0377-8401(01)00227-910.1016/S0377-8401(01)00227-9Suche in Google Scholar
[20] Salminen, J. P., Ossipov, V., Loponen, J., Haukioja, E., & Pihlaja, K. (1999). Characterization of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography—mass spectrometry. Journal of Chromatography A, 864, 283–291. DOI: 10.1016/s0021-9673(99)01036-5. http://dx.doi.org/10.1016/S0021-9673(99)01036-510.1016/S0021-9673(99)01036-5Suche in Google Scholar
[21] Schofield, P., Mbugua, D. M., & Pell, A. N. (2001). Analysis of condensed tannins: a review. Animal Feed Science and Technology, 91, 21–40. DOI: 10.1016/s0377-8401(01)00228-0. http://dx.doi.org/10.1016/S0377-8401(01)00228-010.1016/S0377-8401(01)00228-0Suche in Google Scholar
[22] Sharma, S., Bhat, T. K., & Dawra, R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279, 85–89. DOI: 10.1006/abio.1999.4405. http://dx.doi.org/10.1006/abio.1999.440510.1006/abio.1999.4405Suche in Google Scholar PubMed
[23] Swain, T., & Bate-Smith, E. C. (1962). Flavonoid compounds. In H. S. Mason, & A. M. Florkin (Eds.), Comparative biochemistry (pp. 755–809). New York, NY, USA: Academic Press. Suche in Google Scholar
[24] Van Diepeningen, A. D., Debets, A. J. M., Varga, J., Van Der Gaag, M., Swart, K., & Hoekstra, R. F. (2004). Efficient degradation of tannic acid by black Aspergillus species. Mycological Reserch, 108, 919–925. DOI: 10.1017/s0953756204000747. http://dx.doi.org/10.1017/S095375620400074710.1017/S0953756204000747Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of impurities for controllable growth of high quality optical fluorite
- Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality
- Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil
- Synthesis of rare earth ternary complexes using tryptophan and sodium citrate and their anticoagulant action
- A new bis(azine) tetradentate ligand and its transition metal complexes: Synthesis, characterisation, and extraction properties
- Bicontinuous nanodisc and nanospherical titania materials prepared by sol-gel process in reverse microemulsion
- Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate
- A new convenient synthesis of 5-aryl-2-(arylamino)-1,3,4-oxadiazole derivatives
- From a Tb3+ chelated compound to a hybrid material: selective emission responses to anions
- Doping level of Mn in high temperature grown Zn1−x MnxO studied through electronic charge distribution, magnetization, and local structure
- Thermal analysis of (NaF/AlF3)-FeF3 and (NaF/AlF3)-FeO systems
Artikel in diesem Heft
- Determination of impurities for controllable growth of high quality optical fluorite
- Microbial and enzymatic hydrolysis of tannic acid: influence of substrate chemical quality
- Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil
- Synthesis of rare earth ternary complexes using tryptophan and sodium citrate and their anticoagulant action
- A new bis(azine) tetradentate ligand and its transition metal complexes: Synthesis, characterisation, and extraction properties
- Bicontinuous nanodisc and nanospherical titania materials prepared by sol-gel process in reverse microemulsion
- Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate
- A new convenient synthesis of 5-aryl-2-(arylamino)-1,3,4-oxadiazole derivatives
- From a Tb3+ chelated compound to a hybrid material: selective emission responses to anions
- Doping level of Mn in high temperature grown Zn1−x MnxO studied through electronic charge distribution, magnetization, and local structure
- Thermal analysis of (NaF/AlF3)-FeF3 and (NaF/AlF3)-FeO systems