Home Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
Article
Licensed
Unlicensed Requires Authentication

Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent

  • Selvaraj Roopan EMAIL logo , Fazlur-Rahman Khan and Jong Jin
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

The Mitsunobu reaction is a well-established fundamental reaction and has been widely applied in organic synthesis. In this paper, under Mitsunobu conditions dehydration proceeds between (2-chloroquinolin-3-yl)methanol and nitrogen heterocyclic compounds such as quinazolinone, pyrimidone, 2-oxoquinoline in dry THF in the presence of triethylamine, triphenylphosphane and diethyl azodicarboxylate to give the corresponding products. As part of our recent research, we attempted to couple two N-heterocyclic compounds under Mitsunobu reaction conditions to provide efficient building blocks for natural product synthesis.

[1] Alexandre, F. R., Berecibar, A., Wrigglesworth, R., & Besson, T. (2003). Novel series of 8H-quinazolino[4,3-b]quinazolin-8-ones via two Niementowski condensations. Tetrahedron, 59, 1413–1419. DOI: 10.1016/S0040-4020(03)00053-X. http://dx.doi.org/10.1016/S0040-4020(03)00053-X10.1016/S0040-4020(03)00053-XSearch in Google Scholar

[2] Chavan, S. P., & Sivappa, R. (2004a). A short and efficient general synthesis of luotonin A, B and E. Tetrahedron, 60, 9931–9935. DOI: 10.1016/j.tet.2004.08.025. http://dx.doi.org/10.1016/j.tet.2004.08.02510.1016/j.tet.2004.08.025Search in Google Scholar

[3] Chavan, S. P., & Sivappa, R. (2004b). A synthesis of camptothecin. Tetrahedron Letters, 45, 3113–3115. DOI: 10.1016/j.tetlet.2004.02.091. http://dx.doi.org/10.1016/j.tetlet.2004.02.09110.1016/j.tetlet.2004.02.091Search in Google Scholar

[4] Cravotto, G., Nano, G. M., Palmisano, G., & Tagliapietra, S. (2001). An asymmetric approach to coumarin anticoagulants via hetero-Diels-Alder cycloaddition. Tetrahedron: Asymmetry, 12, 707–709. DOI: 10.1016/S0957-4166(01)00124-0. http://dx.doi.org/10.1016/S0957-4166(01)00124-010.1016/S0957-4166(01)00124-0Search in Google Scholar

[5] Das, B., Madhusudhan, P., & Kashinatham, A. (1998). Two efficient methods for the conversion of camptothecin to mappicine ketone, an antiviral lead compound. Tetrahedron Letters, 39, 431–432. DOI: 10.1016/S0040-4039(97)10539-1. http://dx.doi.org/10.1016/S0040-4039(97)10539-110.1016/S0040-4039(97)10539-1Search in Google Scholar

[6] Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 106, 17–89. DOI: 10.1021/cr0505728. http://dx.doi.org/10.1021/cr050572810.1021/cr0505728Search in Google Scholar PubMed

[7] Dömling, A., & Ugi, I. (2000). Multicomponent reactions with isocyanides. Angewandte Chemie International Edition, 39, 3168–3210. DOI: 10.1002/1521-3773(20000915)39:18〈3168::AID-ANIE3168〉3.0.CO;2-U. Search in Google Scholar

[8] Guan, L.-P., Jin, Q.-H., Tian, G.-R., Chai, K.-Y., & Quan, Z.-S. (2007). Synthesis of some quinoline-2(1H)-one and 1,2,4-triazolo [4,3-a] quinoline derivatives as potent anticonvulsants. Journal of Pharmacy & Pharmaceutical Sciences, 10, 254–262. Search in Google Scholar

[9] Kayser, O., & Kolodziej, H. (1997). Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Medica, 63, 508–510. DOI: 10.1055/s-2006-957752. http://dx.doi.org/10.1055/s-2006-95775210.1055/s-2006-957752Search in Google Scholar PubMed

[10] Khan, F. N., Mittal, S., Anjum, S., Hathwar, V. R., & Ng, S. W. (2009a). Ethyl 6-chloro-2-oxo-4-phenyl-1,2-dihydroquinoline-3-carboxylate. Acta Crystallographica Section E, E65, o2987. DOI: 10.1107/S1600536809045425. http://dx.doi.org/10.1107/S160053680904542510.1107/S1600536809045425Search in Google Scholar PubMed PubMed Central

[11] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010a). 2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline. Acta Crystallographica Section E, E66, o200. DOI: 10.1107/S160053680905404X. http://dx.doi.org/10.1107/S160053680905404X10.1107/S160053680905404XSearch in Google Scholar PubMed PubMed Central

[12] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010b). 2-Chloro-3-hydroxymethyl-6-methoxyquinoline. Acta Crystallographica Section E, E66, o201. DOI: 10.1107/S1600536809054051. http://dx.doi.org/10.1107/S160053680905405110.1107/S1600536809054051Search in Google Scholar PubMed PubMed Central

[13] Khan, F. N., Subashini, R., Kumar, R., Hathwar, V. R., & Ng, S. W. (2009b). 2-Chloroquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2710. DOI: 10.1107/S1600536809040665. http://dx.doi.org/10.1107/S160053680904066510.1107/S1600536809040665Search in Google Scholar

[14] Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009c). 2-Chloro-8-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2722. DOI: 10.1107/S1600536809040859. http://dx.doi.org/10.1107/S160053680904085910.1107/S1600536809040859Search in Google Scholar

[15] Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R., & Ng, S. W. (2009d). 2-Chloro-7,8-dimethylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2709. DOI: 10.1107/S1600536809040860. http://dx.doi.org/10.1107/S160053680904086010.1107/S1600536809040860Search in Google Scholar

[16] Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2009e). 2-Chloro-6-methylquinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2686. DOI: 10.1107/S1600536809040653. http://dx.doi.org/10.1107/S160053680904065310.1107/S1600536809040653Search in Google Scholar

[17] Kidwai, M., & Negi, N. (1997). Synthesis of some novel substituted quinolines as potent analgesic agents. Monatshefte für Chemie, 128, 85–89. DOI: 10.1007/BF00807642. http://dx.doi.org/10.1007/BF0080764210.1007/BF00807642Search in Google Scholar

[18] Kirkiacharian, S., Thuy, D. T., Sicsic, S., Bakhchinian, R., Kurkjian, R., & Tonnaire, T. (2002). Structure-activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Il Farmaco, 57, 703–708. DOI: 10.1016/S0014-827X(02)01264-8. http://dx.doi.org/10.1016/S0014-827X(02)01264-810.1016/S0014-827X(02)01264-8Search in Google Scholar

[19] Leonard, N. J., & Curtin, D. Y. (1946). Preparation of 4-mercapto and 4-amino quinazolines. The Journal of Organic Chemistry, 11, 349–352. DOI: 10.1021/jo01174a007. http://dx.doi.org/10.1021/jo01174a00710.1021/jo01174a007Search in Google Scholar PubMed

[20] Manivel, P., Roopan, S. M., & Khan, F. N. (2008). Synthesis of O-substituted benzophenones by Grignard reaction of 3-substituted isocoumarins. Journal of the Chilean Chemical Society, 53, 1609–1610. DOI: 10.4067/S0717-97072008000300012. http://dx.doi.org/10.4067/S0717-9707200800030001210.4067/S0717-97072008000300012Search in Google Scholar

[21] Patil, N. T., Khan, F. N., & Yamamoto, Y. (2004). Microwave-enhanced Pd(0)/acetic acid catalyzed allylation reactions of C, N, and O-pronucleophiles with alkynes. Tetrahedron Letters, 45, 8497–8499. DOI: 10.1016/j.tetlet.2004.09.099. http://dx.doi.org/10.1016/j.tetlet.2004.09.09910.1016/j.tetlet.2004.09.099Search in Google Scholar

[22] Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N., & Khan, F. N. (2009a). N-phenylnictoninamide. Acta Crystallographica Section E, E65, o571. DOI: 10.1107/S1600536809004863. http://dx.doi.org/10.1107/S160053680900486310.1107/S1600536809004863Search in Google Scholar PubMed PubMed Central

[23] Roopan, S. M., & Khan, F. R. N. (2010). ZnO nanoparticles in the synthesis of some AB ring core of camptothecin. Chemical Papers, 64, 812–817. DOI: 10.2478/s11696-010-0058-y. http://dx.doi.org/10.2478/s11696-010-0058-y10.2478/s11696-010-0058-ySearch in Google Scholar

[24] Roopan, S. M., & Khan, F. R. N. (2009). Synthesis, antioxidant, hemolytic and cytotoxicity activity of AB ring cores of mappicine. ARKIVOC, xiii, 161–169. 10.3998/ark.5550190.0010.d14Search in Google Scholar

[25] Roopan, S. M., & Khan, F. N. (2008). Free radical scavenging activity of nitrogen heterocyclics-quinazolinones & tetrahydrocarbazolones. Indian Journal of Heterocyclic Chemistry, 18, 183–184. Search in Google Scholar

[26] Roopan, S. M., Khan, F. R. N., & Mandal, B. K. (2010). Fe nanoparticles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)-ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10.1016/j.tetlet.2010.02.128. http://dx.doi.org/10.1016/j.tetlet.2010.02.12810.1016/j.tetlet.2010.02.128Search in Google Scholar

[27] Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/V08-149. http://dx.doi.org/10.1139/V08-14910.1139/v08-149Search in Google Scholar

[28] Roopan, S. M., Reddy, B. R., Kumar, A. S., & Khan, F. N. (2009b). Synthesis of 3-substituted isocoumarins using montmorillonite K-10. Indian Journal of Heterocyclic Chemistry, 19, 81–82. Search in Google Scholar

[29] Wang, C.-J., Hsieh, Y.-J., Chu, C.-Y., Lin, Y.-L., & Tseng, T.-H. (2002). Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Letters, 183, 163–168. DOI: 10.1016/S0304-3835(02)00031-9. http://dx.doi.org/10.1016/S0304-3835(02)00031-910.1016/S0304-3835(02)00031-9Search in Google Scholar

[30] Wang, H., & Ganesan, A. (1998). Total synthesis of the cytotoxic alkaloid luotonin A Tetrahedron Letters, 39, 9097–9098. DOI: 10.1016/S0040-4039(98)02004-8. http://dx.doi.org/10.1016/S0040-4039(98)02004-810.1016/S0040-4039(98)02004-8Search in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0018-1/pdf?lang=en
Scroll to top button