Abstract
The equilibrium geometries and electronic structures for a series of single-wall carbon nanotubes (SWCNTs) modified with phenylene were studied using the density functional theory (DFT) at the B3LYP/6-31G(d) level. Of the four configurations of the phenylene-modified SWCNTs, the v-configuration in which the bond is perpendicular to the main axis of the SWCNT is the most thermodynamically stable. The increase in radii of the modified SWCNTs generally leads to a decrease in the energy gaps. The first absorptions in the electronic spectra of the modified SWCNTs compared with those in the electronic spectra of pristine SWCNTs are basically red-shifted. The chemical shifts of bridged carbon atoms connected with phenylene in the v-configuration are shifted downfield relative to those of the pristine SWCNTs. The aromaticity of the rings in SWCNTs is improved owing to the addition of phenylene.
[1] Agboola, B. O., & Ozoemena, K. I. (2010). Synergistic enhancement of supercapacitance upon integration of nickel(II) octa[(3,5-biscarboxylate)-phenoxy]phthalocyanine with SWCNT-phenylamine. Journal of Power Sources, 195, 3841–3848. DOI: 10.1016/j.jpowsour.2009.12.095. http://dx.doi.org/10.1016/j.jpowsour.2009.12.09510.1016/j.jpowsour.2009.12.095Search in Google Scholar
[2] Aihara, J. (2000). Correlation found between the HOMOLUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Physical Chemistry Chemical Physics, 2, 3121–3125. DOI: 10.1039/B002601H. http://dx.doi.org/10.1039/b002601h10.1039/b002601hSearch in Google Scholar
[3] Aihara, J. (1999). Weighed HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theoretical Chemistry Accounts, 102, 134–138. DOI: 10.1007/s002140050483. http://dx.doi.org/10.1007/s00214005048310.1007/s002140050483Search in Google Scholar
[4] Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287. DOI: 10.1016/j.cplett.2007.08.001. http://dx.doi.org/10.1016/j.cplett.2007.08.00110.1016/j.cplett.2007.08.001Search in Google Scholar
[5] Alver, Ö, & Şenyel, M. (2010). Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine. Chemical Papers, 64, 504–514 DOI: 10.2478/s11696-010-0021-y. http://dx.doi.org/10.2478/s11696-010-0021-y10.2478/s11696-010-0021-ySearch in Google Scholar
[6] An, W., & Turner, C. H. (2009). Transition-metal strings templated on boron-doped carbon nanotubes: a DFT investigation. Journal of Physical Chemistry C, 113, 15346–15354. DOI: 10.1021/jp9052715. http://dx.doi.org/10.1021/jp905271510.1021/jp9052715Search in Google Scholar
[7] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar
[8] Burghard, M. (2005). Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 58, 1–109. DOI: 10.1016/j.surfrep.2005.07.001. 10.1016/j.surfrep.2005.07.001Search in Google Scholar
[9] Chen, Z., & King, R. B. (2005). Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chemical Reviews, 105, 3613–3642. DOI: 10.1021/cr0300892. http://dx.doi.org/10.1021/cr030089210.1021/cr0300892Search in Google Scholar PubMed
[10] Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888. DOI: 10.1021/cr030088+. http://dx.doi.org/10.1021/cr030088+10.1021/cr030088+Search in Google Scholar PubMed
[11] Chu, Y.-Y., & Su, M.-D. (2004). Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chemical Physics Letters, 394, 231–237. DOI: 10.1016/j.cplett.2004.07.009. http://dx.doi.org/10.1016/j.cplett.2004.07.00910.1016/j.cplett.2004.07.009Search in Google Scholar
[12] Cosnier, S., & Holzinger, M. (2008). Design of carbon nanotubepolymer frameworks by electropolymerization of SWCNT-pyrrole derivatives. Electrochimica Acta, 53, 3948–3954. DOI: 10.1016/j.electacta.2007.10.027. http://dx.doi.org/10.1016/j.electacta.2007.10.02710.1016/j.electacta.2007.10.027Search in Google Scholar
[13] Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2007). The effect of substituents on the fluorescent properties of para-phenylenevinylene. Journal of the Chinese Chemical Society, 54, 853–860. 10.1002/jccs.200700124Search in Google Scholar
[14] Ding, L., Ding, Y.-Q., Teng, Q.-W., & Wang, K. (2008). Electronic structures and spectroscopy of luminescent para-phenylenevinylene oligomers. Chinese Journal of Chemistry, 26, 97–100. DOI: 10.1002/cjoc.200890044. http://dx.doi.org/10.1002/cjoc.20089004410.1002/cjoc.200890044Search in Google Scholar
[15] Ding, Y., Gao, P., Qin, L., & Teng, Q. (2009). Investigation on stabilities and spectroscopy of C80O2 based on C80 (D 5d) using density function theory. International Journal of Quantum Chemistry, 109, 693–700. DOI: 10.1002/qua.21885. http://dx.doi.org/10.1002/qua.2188510.1002/qua.21885Search in Google Scholar
[16] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A, Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B. 01. Pittsburgh, PA, USA: Gaussian, Inc. Search in Google Scholar
[17] Gao, P., Yu, Y., Ni, Z., & Teng, Q. (2010). Theoretical studies on the electronic structures and spectra of single silicon-doped SWCNTs. Central European Journal of Chemistry, 8, 587–593. DOI: 10.2478/s11532-010-0018-y. http://dx.doi.org/10.2478/s11532-010-0018-y10.2478/s11532-010-0018-ySearch in Google Scholar
[18] Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual density functional theory. Chemical Reviews, 103, 1793–1874. DOI: 10.1021/cr990029p. http://dx.doi.org/10.1021/cr990029p10.1021/cr990029pSearch in Google Scholar
[19] Gill, P. M. W., Johnson, B. G., & Pople, J. A. (1993). A standard grid for density functional calculations. Chemical Physics Letters, 209, 506–512. DOI: 10.1016/0009-2614(93)80125-9. http://dx.doi.org/10.1016/0009-2614(93)80125-910.1016/0009-2614(93)80125-9Search in Google Scholar
[20] Gołąbczak, J., Strąkowska, J., & Konstantynowicz, A. (2005). Dynamics of evening primrose protein hydrolysis. Chemical Papers, 59, 409–412. Search in Google Scholar
[21] Gotovac, S., Yang, C.-M., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 314, 18–24. DOI: 10.1016/j.jcis.2007.04.080. http://dx.doi.org/10.1016/j.jcis.2007.04.08010.1016/j.jcis.2007.04.080Search in Google Scholar PubMed
[22] Gupta, V., & Miura, N. (2006). Influence of the microstructure on the supercapacitive behavior of polyaniline/singlewall carbon nanotube composites. Journal of Power Sources, 157, 616–620. DOI: 10.1016/j.jpowsour.2005.07.046. http://dx.doi.org/10.1016/j.jpowsour.2005.07.04610.1016/j.jpowsour.2005.07.046Search in Google Scholar
[23] Haddad, R., Holzinger, M., Maaref, A., & Cosnier, S. (2010). Pyrene functionalized single-walled carbon nanotubes as precursors for high performance biosensors. Electrochimica Acta, 55, 7800–7803. DOI: 10.1016/j.electacta.2010.03.021. http://dx.doi.org/10.1016/j.electacta.2010.03.02110.1016/j.electacta.2010.03.021Search in Google Scholar
[24] Janjić, G. V., Milčić, M. K., & Zarić, S. D. (2009). Intramolecular MLOH/π and MLNH/π interactions in crystal structures of metal complexes. Chemical Papers, 63, 298–305. DOI: 10.2478/s11696-009-0020-z. http://dx.doi.org/10.2478/s11696-009-0020-z10.2478/s11696-009-0020-zSearch in Google Scholar
[25] Kar, T., Akdim, B., Duan, X., & Pachter, R. (2006). Openended modified single-wall carbon nanotubes: A theoretical study of the effects of purification. Chemical Physics Letters, 423, 126–130. DOI: 10.1016/j.cplett.2006.02.089. http://dx.doi.org/10.1016/j.cplett.2006.02.08910.1016/j.cplett.2006.02.089Search in Google Scholar
[26] Koleva, B. B., Kolev, T. M., & Todorov, S. (2007). Structural and spectroscopic analysis of dipeptide L-methionyl-glycine and its hydrochloride. Chemical Papers, 61, 490–496. DOI: 10.2478/s11696-007-0067-7. http://dx.doi.org/10.2478/s11696-007-0067-710.2478/s11696-007-0067-7Search in Google Scholar
[27] Kóňa, J., & Tvaroška, I. (2009). Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates. Chemical Papers, 63, 598–607. DOI: 10.2478/s11696-009-0060-4. http://dx.doi.org/10.2478/s11696-009-0060-410.2478/s11696-009-0060-4Search in Google Scholar
[28] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar
[29] Lin, Y., Cai, W., & Shao, X. (2006). Formation and stability of parallel carbon nanotube junctions. Journal of Molecular Structure: THEOCHEM, 767, 87–93. DOI: 10.1016/j.theochem.2006.05.003. http://dx.doi.org/10.1016/j.theochem.2006.05.00310.1016/j.theochem.2006.05.003Search in Google Scholar
[30] Lu, X., & Chen, Z. (2005). Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696. DOI: 10.1021/cr030093d. http://dx.doi.org/10.1021/cr030093d10.1021/cr030093dSearch in Google Scholar PubMed
[31] Mugadza, T., & Nyokong, T. (2009). Synthesis and characterization of electrocatalytic conjugates of tetraamino cobalt (II) phthalocyanine and single wall carbon nanotubes. Electrochimica Acta, 54, 6347–6353. DOI: 10.1016/j.electacta.2009.05.074. http://dx.doi.org/10.1016/j.electacta.2009.05.07410.1016/j.electacta.2009.05.074Search in Google Scholar
[32] Nayak, R. R., Lee, K. Y., Shanmugharaj, A. M., & Ryu, S. H. (2007). Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. European Polymer Journal, 43, 4916–4923. DOI: 10.1016/j.eurpolymj.2007.04.012. http://dx.doi.org/10.1016/j.eurpolymj.2007.04.01210.1016/j.eurpolymj.2007.04.012Search in Google Scholar
[33] Ouyang, M., Huang, J.-L., Cheung, C. L., & Lieber, C. M. (2001). Energy gaps in “metallic” single-walled carbon nanotubes. Science, 292, 702–705. DOI: 10.1126/science.1058853. http://dx.doi.org/10.1126/science.105885310.1126/science.1058853Search in Google Scholar PubMed
[34] Parr, R. G., & Yang, W. (1989). Density-functional theory of atoms and molecules. New York, NY, USA: Oxford University Press. Search in Google Scholar
[35] Ren, X., Luo, Z., Du, J., & Wu, S. (2010). Theoretical binding affinities and spectroscopy of complexes formed by cyclobis(paraquat-p-anthrancene) with some pharmaceutical molecules. Russian Journal of Physical Chemistry A, 84, 826–830. DOI: 10.1134/S0036024410050201. http://dx.doi.org/10.1134/S003602441005020110.1134/S0036024410050201Search in Google Scholar
[36] Ridley, J., & Zerner, M. C. (1973). An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoretica Chimica Acta, 32, 111–134. DOI: 10.1007/BF00528484. http://dx.doi.org/10.1007/BF0052848410.1007/BF00528484Search in Google Scholar
[37] Smieško, M., & Remko, M. (2005). Structure and gas-phase stability of Zn(II)—molecule complexes. Chemical Papers, 59, 310–315. Search in Google Scholar
[38] Šramko, M., Šille, J., Ježko, P., & Garaj, V. (2010). Effect of dielectric medium on angiotensin converting enzyme inhibitors binding to Zn2+. Chemical Papers, 64, 395–404. DOI: 10.2478/s11696-010-0005-y. http://dx.doi.org/10.2478/s11696-010-0005-y10.2478/s11696-010-0005-ySearch in Google Scholar
[39] Stylianakis, M. M., Mikroyannidis, J. A., & Kymakis, E. (2010). A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells. Solar Energy Materials & Solar Cells, 94, 267–274. DOI: 10.1016/j.solmat.2009.09.013. http://dx.doi.org/10.1016/j.solmat.2009.09.01310.1016/j.solmat.2009.09.013Search in Google Scholar
[40] Su, N., Guo, Q., & Wu, S. (2008). Stability and spectroscopic studies on oxygenated armchair SWCNTs. Indian Journal of Chemistry Section A, 47A, 1473–1479. Search in Google Scholar
[41] Sun, H., Yun, X., Wu, S., & Teng, Q. (2008). Theoretical studies on stabilities, 13C and 3He NMR spectroscopy of C84O derived from C84 (D 2d). Journal of Molecular Structure: THEOCHEM, 868, 71–77. DOI: 10.1016/j.theochem.2008.08.007. http://dx.doi.org/10.1016/j.theochem.2008.08.00710.1016/j.theochem.2008.08.007Search in Google Scholar
[42] Sun, Y., Du, J., Wang, Y., & Wu, S. (2010). Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids. Chemical Papers, 64, 515–522. DOI: 10.2478/s11696-010-0029-3. http://dx.doi.org/10.2478/s11696-010-0029-310.2478/s11696-010-0029-3Search in Google Scholar
[43] Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, seperation and characterisation of the fullerenes C60 and C70: the third form of carbon. Journal of the Chemical Society, Chemical Communications, 1990, 1423–1425. DOI: 10.1039/C39900001423. http://dx.doi.org/10.1039/c3990000142310.1039/c39900001423Search in Google Scholar
[44] Van Lier, G., Fowler, P. W., De Proft, F., & Geerlings, P. (2002). A pentagon-proximity model for local aromaticity in fullerenes and nanotubes. The Journal of Physical Chemistry A, 106, 5128–5135. DOI: 10.1021/jp013642x. http://dx.doi.org/10.1021/jp013642x10.1021/jp013642xSearch in Google Scholar
[45] von Ragué Schleyer, P., Maerker, C., Dransfeld, A., Jiao, H., & van Eikema Hommes, N. J. R. (1996). Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. Journal of the American Chemical Society, 118, 6317–6318. DOI: 10.1021/ja960582d. http://dx.doi.org/10.1021/ja960582d10.1021/ja960582dSearch in Google Scholar PubMed
[46] Wang, Z., & Wu, S. (2007). Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules. Chemical Papers, 61, 313–320. DOI: 10.2478/s11696-007-0039-y. http://dx.doi.org/10.2478/s11696-007-0039-y10.2478/s11696-007-0039-ySearch in Google Scholar
[47] Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112, 8251–8260. DOI: 10.1021/ja00179a005. http://dx.doi.org/10.1021/ja00179a00510.1021/ja00179a005Search in Google Scholar
[48] Yu, X., Yi, B., Yu, W., & Wang, X. (2008). DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers. Chemical Papers, 62, 623–629. DOI: 10.2478/s11696-008-0066-3. http://dx.doi.org/10.2478/s11696-008-0066-310.2478/s11696-008-0066-3Search in Google Scholar
[49] Yu, X., Yu, W., Yi, B., & Wang, X. (2009). Artificial neural network prediction of steric hindrance parameter of polymers. Chemical Papers, 63, 432–437. DOI: 10.2478/s11696-009-0036-4. http://dx.doi.org/10.2478/s11696-009-0036-410.2478/s11696-009-0036-4Search in Google Scholar
[50] Zhang, W., Wang, Y., Zhang, H., & Wu, S. (2010). DFT study on stability and spectroscopy of C84O2 based on C84 (D 2). Journal of Molecular Structure: THEOCHEM, 941, 61–65. DOI: 10.1016/j.theochem.2009.11.002. http://dx.doi.org/10.1016/j.theochem.2009.11.00210.1016/j.theochem.2009.11.002Search in Google Scholar
[51] Zhang, Y., Li, T., & Teng, Q.-W. (2008). Stabilities and spectroscopy of hydrogen bonding complexes formed by 2,4-bis(acrylamido)pyrimidines. Chinese Journal of Chemistry, 26, 1567–1572. DOI: 10.1002/cjoc.200890283. http://dx.doi.org/10.1002/cjoc.20089028310.1002/cjoc.200890283Search in Google Scholar
[52] Zhao, H., Zhou, J., Hu, L., & Teng, Q. (2009). Theoretical studies on electronic structures and NMR spectra of oligo(4-vinylpyridine). Chinese Journal of Chemistry, 27, 1687–1691. DOI: 10.1002/cjoc.200990283. http://dx.doi.org/10.1002/cjoc.20099028310.1002/cjoc.200990283Search in Google Scholar
[53] Zhu, Z., Wu, S., & Zhang, Y. (2008). The electronic structures and spectra of conducting pentacene derivatives. Russian Journal of Physical Chemistry A, 82, 2293–2298. DOI: 10.1134/S0036024408130220. http://dx.doi.org/10.1134/S003602440813022010.1134/S0036024408130220Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions