Home Swelling properties of particles in amphoteric polyacrylamide dispersion
Article
Licensed
Unlicensed Requires Authentication

Swelling properties of particles in amphoteric polyacrylamide dispersion

  • Chuanxing Wang EMAIL logo , Jun Xu , Jun Zhang and Yumin Wu
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

Swelling properties of amphoteric polyacrylamide (AmPAM) dispersions were investigated by measurements of apparent viscosity and particle morphology. AmPAM dispersion was prepared by dispersion polymerization in aqueous solution of ammonium sulphate. Changes of particles during dispersion polymerisation of AmPAM were simulated and compared with anionic and cationic polyacrylamide (APAM and CPAM, respectively). Sample viscosity and particle morphology were obtained using a rotational viscometer and optical microscope. It was found that small molecules or ions enter and swell particles in the AmPAM dispersion when (NH4)2SO4 concentration decreases. Similarly, monomers, including acrylamide, acrylic acid, and methacrylatoethyl trimethyl ammonium chloride, have the same effects on the AmPAM dispersion but the effect degree is different. Swelling properties of the AmPAM dispersion were different from those of the APAM and CPAM dispersions due to their different ionic nature, type of stabiliser, media, etc. Particles in the APAM or CPAM dispersions were swelled less than those in the AmPAM dispersion.

[1] Abdel-Razik, H. H. (2008). Synthesis and characterization of diaminomaleonitrile-functionalized polystyrene grafts for application in pervaporation separation. Chemical Papers, 62, 404–409. DOI: 10.2478/s11696-008-0037-8. http://dx.doi.org/10.2478/s11696-008-0037-810.2478/s11696-008-0037-8Search in Google Scholar

[2] Bartoň, J., Kawamoto, S., Fujimoto, K., Kawaguchi, H., & Capek, I. (2000). Preparation of partly hydrophobized, crosslinked polyacrylamide particles by terpolymerization of acrylamide/N,N-methylenebisacrylamide/styrene in inverse microemulsion. Polymer International, 49, 358–366. DOI: 10.1002/(SICI)1097-0126(200004)49:4<358::AID-PI376>3.0.CO;2-1. http://dx.doi.org/10.1002/(SICI)1097-0126(200004)49:4<358::AID-PI376>3.0.CO;2-110.1002/(SICI)1097-0126(200004)49:4<358::AID-PI376>3.0.CO;2-1Search in Google Scholar

[3] Bočková, J., Vojtová, L., Přikryl, R., Čechal, J., & Jančář, J. (2008). Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications. Chemical Papers, 62, 580–588. DOI: 10.2478/s11696-008-0076-1. http://dx.doi.org/10.2478/s11696-008-0076-110.2478/s11696-008-0076-1Search in Google Scholar

[4] Bradley, M., Vincent, B., & Burnett, G. (2009). Uptake and release of surfactants from polyampholyte microgel particles. Colloid and Polymer Science, 287, 345–350. DOI: 10.1007/s00396-008-1978-8. http://dx.doi.org/10.1007/s00396-008-1978-810.1007/s00396-008-1978-8Search in Google Scholar

[5] Chen, D., Liu, X., Yue, Y., Zhang, W., & Wang, P. (2006). Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution. European Polymer Journal, 42, 1284–1297. DOI: 10.1016/j.eurpolymj.2005.12.007. http://dx.doi.org/10.1016/j.eurpolymj.2005.12.00710.1016/j.eurpolymj.2005.12.007Search in Google Scholar

[6] Chen, Q., Liu, X., Yang, Q., Xu, K., Zhang, W., Song, C., & Wang, P. (2008). Low cationic proportion ampholytic polymer: Synthesis, solution properties and interaction with anionic surfactant. Polymer Bulletin, 60, 545–554. DOI: 10.1007/s00289-007-0885-3. http://dx.doi.org/10.1007/s00289-007-0885-310.1007/s00289-007-0885-3Search in Google Scholar

[7] Cho, M. S., Yoon, K. J., & Song, B. K. (2002). Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. Journal of Applied Polymer Science, 83, 1397–1405. DOI: 10.1002/app.2300. http://dx.doi.org/10.1002/app.230010.1002/app.2300Search in Google Scholar

[8] Ezell, R. G., Gorman, I., Lokitz, B., Treat, N., McConaughy, S. D., & McCormick, C. L. (2006). Polyampholyte terpolymers of amphoteric, amino acid-based monomers with acrylamide and (3-acrylamidopropyl)trimethyl ammonium chloride. Journal of Polymer Science Part A: Polymer Chemistry, 44, 4479–4493. DOI: 10.1002/pola.21543. http://dx.doi.org/10.1002/pola.2154310.1002/pola.21543Search in Google Scholar

[9] Fujioka, M., Kurihara, H., Kawamura, R., Sato, H., Tsuchiya, K., & Ogino, K. (2008). Preparation of poly(4-butyltriphenylamine) particles by chemical oxidative dispersion polymerization. Colloid and Polymer Science, 286, 313–318. DOI: 10.1007/s00396-007-1779-5. http://dx.doi.org/10.1007/s00396-007-1779-510.1007/s00396-007-1779-5Search in Google Scholar

[10] Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 41, 441–501. DOI: 10.1021/cr60130a002. http://dx.doi.org/10.1021/cr60130a00210.1021/cr60130a002Search in Google Scholar

[11] Guha, S., & Mandal, B. M. (2004). Dispersion polymerization of acrylamide III. Partial isopropyl ester of poly(vinyl methyl ether-alt-maleic anhydride) as a stabilizer. Journal of Colloid and Interface Science, 271, 55–59. DOI: 10.1016/j.jcis.2003.10.023. http://dx.doi.org/10.1016/j.jcis.2003.10.02310.1016/j.jcis.2003.10.023Search in Google Scholar

[12] Hao, J. (2001). Microemulsion polymerization of acrylamide and styrene: Effect of the structures of reaction media. Journal of Polymer Science Part A: Polymer Chemistry, 39, 3320–3334. DOI: 10.1002/pola.1315. http://dx.doi.org/10.1002/pola.131510.1002/pola.1315Search in Google Scholar

[13] Hong, J., Hong, C. K., & Shim, S. E. (2007). Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 225–233. DOI: 10.1016/j.colsurfa.2007.02.027. http://dx.doi.org/10.1016/j.colsurfa.2007.02.02710.1016/j.colsurfa.2007.02.027Search in Google Scholar

[14] Ishimatsu, R., Shigematsu, F., Hakuto, T., Nishi, N., & Kakiuchi, T. (2007). Structure of the electrical double layer on the aqueous solution side of the polarized interface between water and a room-temperature ionic liquid, tetrahexylammonium bis(trifluoromethylsulfonyl)imide. Langmuir, 23, 925–929. DOI: 10.1021/la0623073. http://dx.doi.org/10.1021/la062307310.1021/la0623073Search in Google Scholar

[15] Itoh, T., Fukutani, K., Hino, M., Ihara, E., & Inoue, K. (2009). Effects of polystyrene-b-poly(aminomethyl styrene)s as stabilizers on dispersion polymerization of styrene in alcoholic media. Journal of Colloid and Interface Science, 330, 292–297. DOI: 10.1016/j.jcis.2008.10.052. http://dx.doi.org/10.1016/j.jcis.2008.10.05210.1016/j.jcis.2008.10.052Search in Google Scholar

[16] Kawaguchi, S., & Ito, K. (2005). Dispersion polymerization. Advances in Polymer Science, 175, 299–328. DOI: 10.1007/b100118. 10.1007/b100118Search in Google Scholar

[17] Lee, J. M., Lee, K., Min, K., & Choe, S. (2008). The effect of polystyrene-block-poly(4-vinylpyridine) prepared by a RAFT method in the dispersion polymerization of styrene. Current Applied Physics, 8, 732–735. DOI: 10.1016/j.cap.2007.04.031. http://dx.doi.org/10.1016/j.cap.2007.04.03110.1016/j.cap.2007.04.031Search in Google Scholar

[18] Musial, W., Kokol, V., Fecko, T., & Voncina, B. (2010a). Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers. Chemical Papers, 64, 791–798. DOI: 10.2478/s11696-010-0065-z. http://dx.doi.org/10.2478/s11696-010-0065-z10.2478/s11696-010-0065-zSearch in Google Scholar

[19] Musial, W., Vincent, B., Szumny, A., & Voncina, B. (2010b). Morphological characteristics of modified freeze-dried poly (N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS. Chemical Papers, 64, 602–612. DOI: 10.2478/s11696-010-0041-7. http://dx.doi.org/10.2478/s11696-010-0041-710.2478/s11696-010-0041-7Search in Google Scholar

[20] Ray, B., & Mandal, B. M. (1999). Dispersion polymerization of acrylamide: Part II. 2,2′-Azobisisobutyronitrile initiator. Journal of Polymer Science Part A: Polymer Chemistry, 37, 493–499. DOI: 10.1002/(SICI)1099-0518(19990215)37:4<493::AID-POLA13>3.0.CO;2-Y. http://dx.doi.org/10.1002/(SICI)1099-0518(19990215)37:4<493::AID-POLA13>3.0.CO;2-Y10.1002/(SICI)1099-0518(19990215)37:4<493::AID-POLA13>3.0.CO;2-YSearch in Google Scholar

[21] Rintoul, I., & Wandrey, C. (2009). Magnetic field effects on the copolymerization of water-soluble and ionic monomers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 373–383. DOI: 10.1002/pola.23152. http://dx.doi.org/10.1002/pola.2315210.1002/pola.23152Search in Google Scholar

[22] Schmid, A., Fujii, S., & Armes, S. P. (2006). Polystyrene-silica nanocomposite particles via alcoholic dispersion polymerization using a cationic azo initiator. Langmuir, 22, 4923–4927. DOI: 10.1021/la060308p. http://dx.doi.org/10.1021/la060308p10.1021/la060308pSearch in Google Scholar PubMed

[23] Shen, S., Sudol, E. D., & El-Aasser, M. S. (1993). Control of particle size in dispersion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 31, 1393–1402. DOI: 10.1002/pola.1993.080310606. http://dx.doi.org/10.1002/pola.1993.08031060610.1002/pola.1993.080310606Search in Google Scholar

[24] Song, B. K., Cho, M. S., Yoon, K. J., & Lee, D. C. (2003). Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution. Journal of Applied Polymer Science, 87, 1101–1108. DOI: 10.1002/app.11559. http://dx.doi.org/10.1002/app.1155910.1002/app.11559Search in Google Scholar

[25] Tao, Z., Yang, W., Zhou, H., Wang, C., & Fu, S. (2000). Morphological investigation of styrene and acrylamide polymer microspheres prepared by dispersion copolymerization. Colloid and Polymer Science, 278, 509–516. DOI: 10.1007/s003960050548. http://dx.doi.org/10.1007/s00396005054810.1007/s003960050548Search in Google Scholar

[26] Wang, L.-J., Wang, J.-P., Yuan, S.-J., Zhang, S.-J., Tang, Y., & Yu, H.-Q. (2009). Gamma radiation-induced dispersion polymerization in aqueous salts solution for manufacturing a cationic flocculant. Chemical Engineering Journal, 149, 118–122. DOI: 10.1016/j.cej.2008.10.010. http://dx.doi.org/10.1016/j.cej.2008.10.01010.1016/j.cej.2008.10.010Search in Google Scholar

[27] Wu, Y., Wang, C., & Xu, J. (2010). Aqueous dispersion polymerization of amphoteric polyacrylamide. Journal of Applied Polymer Science, 115, 1131–1137. DOI: 10.1002/app.31201. http://dx.doi.org/10.1002/app.3120110.1002/app.31201Search in Google Scholar

[28] Wu, Y. M., Chen, Q. F., Xu, J., & Bi, J. M. (2008). Aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer. Journal of Applied Polymer Science, 108, 134–139. DOI: 10.1002/app.27464. http://dx.doi.org/10.1002/app.2746410.1002/app.27464Search in Google Scholar

[29] Wu, Y. M., Wang, Y. P., Yu, Y. Q., Xu, J., & Chen, Q. F. (2006). Dispersion polymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulfonate in aqueous solution. Journal of Applied Polymer Science, 102, 2379–2385. DOI: 10.1002/app.24494. http://dx.doi.org/10.1002/app.2449410.1002/app.24494Search in Google Scholar

[30] Yu, H.-Q., & Cong, R. (2010). Preparation and characterization of hydrogels based on acryloyl end-capped four-arm star-shaped poly(ethylene glycol)-branched-oligo(L-lactide) via Michael-type addition reaction. Chemical Papers, 64, 619–624. DOI: 10.2478/s11696-010-0055-1. http://dx.doi.org/10.2478/s11696-010-0055-110.2478/s11696-010-0055-1Search in Google Scholar

[31] Zhang, Y., Lin, H., Li, Z., & Lv, P. (2008). Improvement of shrimp (Penaeus vannamei) allergens purification by ammonium sulfate precipitation. Food and Drug, 10, 50–52. (in Chinese) Search in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0012-7/pdf?lang=en
Scroll to top button