Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
-
Cornelia Ratiu
, Florica Manea
, Carmen Lazau , Corina Orha , Georgeta Burtica , Ioan Grozescu and Joop Schoonman
Abstract
This paper reports the results of an investigation into enhancement of the electrochemical oxidation of p-aminophenol (4-AP) in an aqueous solution with a boron-doped diamond (BDD) electrode, assisted by photocatalysis using a zeolite-supported TiO2 (Z-TiO2) catalyst. The BDD electrode was characterised in 0.1 M Na2SO4-supporting electrolyte and the presence of 4-AP by open-circuit potential behaviour (OCP) and cyclic voltammetry (CV). The electrode behaviour was investigated in the dark and following UV irradiation and in the absence/presence of the Z-TiO2 catalyst. The electro-oxidation process was carried out using chronoamperometry (CA) and multiple-pulsed amperometry (MPA) at the selected potential under potentiostatic conditions. The electrochemical degradation process of 4-AP on the BDD electrode was improved by the application of a pulsed potential, which allowed both in-situ electrochemical cleaning of the electrode and indirect oxidation of 4-AP by oxygen evolution. The application of photocatalysis using Z-TiO2 in the 4-AP electrochemical degradation exhibited an enhanced effect when the anodic potential was set at +1.25 V vs. Ag/AgCl in the water stability region, close to the oxygen evolution potential.
[1] An, T., Li, G., Xiong, Y., Zhu, X., Xing, H., & Liu, G. (2001). Photoelectrochemical degradation of methylene blue with nano TiO2 under high potential bias. Materials Physics and Mechanics, 4, 101–106. Search in Google Scholar
[2] Augugliaro, V., Litter, M., Palmisano, L., & Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7, 127–144. DOI:10.1016/j.jphotochemrev.2006.12.001. http://dx.doi.org/10.1016/j.jphotochemrev.2006.12.00110.1016/j.jphotochemrev.2006.12.001Search in Google Scholar
[3] Berríos, C., Arce, R., Rezende, M. C., Ureta-Zañartu, M. S., & Gutiérrez, C. (2008). Electrooxidation of chlorophenols at a glassy carbon electrode in a pH 11 buffer. Electrochimica Acta, 53, 2768–2775. DOI: 10.1016/j.electacta.2007.10.053. http://dx.doi.org/10.1016/j.electacta.2007.10.05310.1016/j.electacta.2007.10.053Search in Google Scholar
[4] Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X., & Casado, J. (1998). Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 16, 31–42. DOI: 10.1016/S0926-3373(97)00059-3. http://dx.doi.org/10.1016/S0926-3373(97)00059-310.1016/S0926-3373(97)00059-3Search in Google Scholar
[5] Cañizares, P., Martínez, L., Paz, R., Sáez, C., Lobato, J., & Rodrigo, M. A. (2006). Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with borondoped diamond anodes. Journal of Chemical Technology and Biotechnology, 81, 1331–1337. DOI: 10.1002/jctb.1428. http://dx.doi.org/10.1002/jctb.140210.1002/jctb.1428Search in Google Scholar
[6] Cañizares, P., Sáez, C., Lobato, J., & Rodrigo, M. A. (2004). Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 49, 4641–4650. DOI: 10.1016/j.electacta.2004.05.019. http://dx.doi.org/10.1016/j.electacta.2004.05.01910.1016/j.electacta.2004.05.019Search in Google Scholar
[7] Charoenraks, T., Chuanuwatanakul, S., Honda, K., Yamaguchi, Y., & Chailapakul, O. (2005). Analysis of tetracycline antibiotics using HPLC with pulsed amperometric detection. Analytial Sciences, 21, 241–245. DOI: 10.2116/analsci.21.241. http://dx.doi.org/10.2116/analsci.21.24110.2116/analsci.21.241Search in Google Scholar PubMed
[8] Chen, J., Liu, M., Zhang, J., Ying, X., & Jin, L. (2004). Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system. Journal of Environmental Management, 70, 43–47. DOI: 10.1016/j.jenvman.2003.09.019. http://dx.doi.org/10.1016/j.jenvman.2003.09.01910.1016/j.jenvman.2003.09.019Search in Google Scholar PubMed
[9] Coteiro, R. D., & De Andrade, A. R. (2007). Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency. Journal of Applied Electrochemistry, 37, 691–698. DOI: 10.1007/s10800-007-9301-9. http://dx.doi.org/10.1007/s10800-007-9301-910.1007/s10800-007-9301-9Search in Google Scholar
[10] Gherardini, L., Michaud, P. A., Panizza, M., Comninellis, C., & Vatistas, N. (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency (ϕ). Journal of the Electrochemical Society, 148, D78–D82. DOI: 10.1149/1.1368105. http://dx.doi.org/10.1149/1.136810510.1149/1.1368105Search in Google Scholar
[11] Gomathi Devi, L., Kottam, N., Girish Kumar, S., & Anantha Raju, K. S. (2009). Mechanism of charge transfer in the transition metal ion doped TiO2 with bicrystalline framework of anatase and rutile: photocatalytic and photoelectrocatalytic activity. Catalysis Letters, 131, 612–617. DOI: 10.1007/s10562-009-0015-y. http://dx.doi.org/10.1007/s10562-009-0015-y10.1007/s10562-009-0015-ySearch in Google Scholar
[12] Krýsa, J., & Jirkovský, J. (2002). Electrochemically assisted photocatalytic degradation of oxalic acid on particulate TiO2 film in a batch mode plate photoreactor. Journal of Applied Electrochemistry, 32, 591–596. DOI: 10.1023/A:1020172613963. http://dx.doi.org/10.1023/A:102017261396310.1023/A:1020172613963Search in Google Scholar
[13] Lei, Y., Shen, Z., Chen, X., Jia, J., & Wang, W. (2006). Preparation and application of nano-TiO2 catalyst in dye electrochemical treatment. Water SA, 32, 205–210. Search in Google Scholar
[14] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111. http://dx.doi.org/10.1016/j.apsusc.2005.02.11110.1016/j.apsusc.2005.02.111Search in Google Scholar
[15] Li, J., Zheng, L., Li, L., Xian, Y., & Jin, L. (2007). Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. Journal of Hazardous Materials, 139, 72–78. DOI:10.1016/j.jhazmat.2006.06.003. http://dx.doi.org/10.1016/j.jhazmat.2006.06.00310.1016/j.jhazmat.2006.06.003Search in Google Scholar
[16] Neelavannan, M. G., & Ahmed Basha, C. (2007). Electrochemical-assisted photocatalytic degradation of textile washwater. Separation and Purification Technology, 61, 168–174. DOI: 10.1016/j.seppur.2007.10.009. http://dx.doi.org/10.1016/j.seppur.2007.10.00910.1016/j.seppur.2007.10.009Search in Google Scholar
[17] Neelavannan, M. G., Revathi, M., & Ahmed Basha, C. (2007). Photocatalytic and electrochemical combined treatment of textile wash water. Journal of Hazardous Materials, 149, 371–378. DOI: 10.1016/j.jhazmat.2007.04.025. http://dx.doi.org/10.1016/j.jhazmat.2007.04.02510.1016/j.jhazmat.2007.04.025Search in Google Scholar
[18] Peñalver, A., Pocurull, E., Borrull, F., & Marcé, R. M. (2002). Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. Journal of Chromatography A, 953, 79–87. DOI: 10.1016/S0021-9673(02)00113-9. http://dx.doi.org/10.1016/S0021-9673(02)00113-910.1016/S0021-9673(02)00113-9Search in Google Scholar
[19] Quiroz, M. A., Reyna, S., Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B: Environmental, 59, 259–266. DOI: 10.1016/j.apcatb.2005.02.009. http://dx.doi.org/10.1016/j.apcatb.2005.02.00910.1016/j.apcatb.2005.02.009Search in Google Scholar
[20] Ratiu, C., Lazau, C., Sfirloaga, P., Orha, C., Sonea, D., Novaconi, S., Manea, F., Burtica, G., & Grozescu, I. (2009a). Decontaminate effect of the functionalized materials with undoped and doped (Ag) TiO2 nanocrystals. Environmental Engineering and Management Journal, 8, 237–242. 10.30638/eemj.2009.034Search in Google Scholar
[21] Ratiu, C., Lazau, C., Orha, C., Sfirloaga, P., Manea, F., Burtica, G., Iovi, A., & Grozescu, I. (2009b). Synthesis of hybrid zeolitic materials with TiO2 nanocrystals using solid-solid method. Journal of Optoelectronics and Advanced Materials, 11, 838–844. Search in Google Scholar
[22] Safavi, A., Maleki, N., & Moradlou, O. (2008). A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis, 20, 2158–2162. DOI: 10.1002/elan.200804292. http://dx.doi.org/10.1002/elan.20080429210.1002/elan.200804292Search in Google Scholar
[23] Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázques, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565, 375–383. DOI: 10.1016/j.jelechem.2003.11.005. http://dx.doi.org/10.1016/j.jelechem.2003.11.00510.1016/j.jelechem.2003.11.005Search in Google Scholar
[24] Selcuk, H., & Bekbolet, M. (2008). Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode. Chemosphere, 73, 854–858. DOI: 10.1016/j.chemosphere.2008.05.069. http://dx.doi.org/10.1016/j.chemosphere.2008.05.06910.1016/j.chemosphere.2008.05.069Search in Google Scholar
[25] Shen, Z. M., Wu, D., Yang, J., Yuan, T., Wang, W. H., & Jia, J. P. (2006). Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 131, 90–97. DOI: 10.1016/j.jhazmat.2005.09.010. http://dx.doi.org/10.1016/j.jhazmat.2005.09.01010.1016/j.jhazmat.2005.09.010Search in Google Scholar
[26] Skowrońsky, J. M., & Krawczyk, P. (2007). Improved electrooxidation of phenol at exfoliated graphite electrodes. Journal of Solid State Electrochemistry, 11, 223–230. DOI: 10.1007/s10008-005-0092-9. 10.1007/s10008-005-0092-9Search in Google Scholar
[27] Suffredini, H. B., Machado, S. A. S., & Avaca, L. A. (2004). The water decomposition reactions on boron-doped diamond electrodes. Journal of the Brazilian Chemical Society, 15, 16–21. DOI: 10.1590/S0103-50532004000100004. http://dx.doi.org/10.1590/S0103-5053200400010000410.1590/S0103-50532004000100004Search in Google Scholar
[28] Sun, M., Yao, R., You, Y., Deng, S., & Gao, W. (2007). Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Frontiers of Environmental Science & Engineering in China, 1, 95–98. DOI: 10.1007/s11783-007-0018-0. http://dx.doi.org/10.1007/s11783-007-0018-010.1007/s11783-007-0018-0Search in Google Scholar
[29] Takeda, N., Torimoto, T., Sampath, S., Kuwabata, S., & Yoneyama, H. (1995). Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. The Journal of Physical Chemistry, 99, 9986–9991. DOI: 10.1021/j100024a047. http://dx.doi.org/10.1021/j100024a04710.1021/j100024a047Search in Google Scholar
[30] Ureta-Zañartu, M. S., Bustos, P., Berríos, C, Diez, M. C., Mora, M. L., & Gutiérrez, C. (2002). Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochimica Acta, 47, 2399–2406. DOI: 10.1016/S0013-4686(02)00043-9. http://dx.doi.org/10.1016/S0013-4686(02)00043-910.1016/S0013-4686(02)00043-9Search in Google Scholar
[31] Walsh, F. C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 73, 1819–1837. DOI: 10.1351/pac200173121819. http://dx.doi.org/10.1351/pac20017312181910.1351/pac200173121819Search in Google Scholar
[32] Wang, B., Kong, W., & Ma, H. (2007). Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. Journal of Hazardous Materials, 146, 295–301. DOI: 10.1016/j.jhazmat.2006.12.031. http://dx.doi.org/10.1016/j.jhazmat.2006.12.03110.1016/j.jhazmat.2006.12.031Search in Google Scholar PubMed
[33] Wang, Y. H., Chan, K. Y., Li, X. Y., & So, S. K. (2006) Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode. Chemosphere, 65, 1087–1093. DOI:10.1016/j.chemosphere.2006.04.061. http://dx.doi.org/10.1016/j.chemosphere.2006.04.06110.1016/j.chemosphere.2006.04.061Search in Google Scholar PubMed
[34] Zhang, Y., Yoshihara, S., & Shirakashi, T. (2005). Novel application of boron-doped diamond and related material to electrochemical generation of functional water. Electrochimica Acta, 51, 1008–1011. DOI: 10.1016/j.electacta.2005.04.054. http://dx.doi.org/10.1016/j.electacta.2005.04.05410.1016/j.electacta.2005.04.054Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Articles in the same Issue
- Steam-reforming of ethanol for hydrogen production
- Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
- Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
- Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
- Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
- Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
- Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
- Swelling properties of particles in amphoteric polyacrylamide dispersion
- Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
- An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
- Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
- Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
- Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
- Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
- Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
- Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
- Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions