Home Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
Article
Licensed
Unlicensed Requires Authentication

Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst

  • Cornelia Ratiu EMAIL logo , Florica Manea , Carmen Lazau , Corina Orha , Georgeta Burtica , Ioan Grozescu and Joop Schoonman
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

This paper reports the results of an investigation into enhancement of the electrochemical oxidation of p-aminophenol (4-AP) in an aqueous solution with a boron-doped diamond (BDD) electrode, assisted by photocatalysis using a zeolite-supported TiO2 (Z-TiO2) catalyst. The BDD electrode was characterised in 0.1 M Na2SO4-supporting electrolyte and the presence of 4-AP by open-circuit potential behaviour (OCP) and cyclic voltammetry (CV). The electrode behaviour was investigated in the dark and following UV irradiation and in the absence/presence of the Z-TiO2 catalyst. The electro-oxidation process was carried out using chronoamperometry (CA) and multiple-pulsed amperometry (MPA) at the selected potential under potentiostatic conditions. The electrochemical degradation process of 4-AP on the BDD electrode was improved by the application of a pulsed potential, which allowed both in-situ electrochemical cleaning of the electrode and indirect oxidation of 4-AP by oxygen evolution. The application of photocatalysis using Z-TiO2 in the 4-AP electrochemical degradation exhibited an enhanced effect when the anodic potential was set at +1.25 V vs. Ag/AgCl in the water stability region, close to the oxygen evolution potential.

[1] An, T., Li, G., Xiong, Y., Zhu, X., Xing, H., & Liu, G. (2001). Photoelectrochemical degradation of methylene blue with nano TiO2 under high potential bias. Materials Physics and Mechanics, 4, 101–106. Search in Google Scholar

[2] Augugliaro, V., Litter, M., Palmisano, L., & Soria, J. (2006). The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 7, 127–144. DOI:10.1016/j.jphotochemrev.2006.12.001. http://dx.doi.org/10.1016/j.jphotochemrev.2006.12.00110.1016/j.jphotochemrev.2006.12.001Search in Google Scholar

[3] Berríos, C., Arce, R., Rezende, M. C., Ureta-Zañartu, M. S., & Gutiérrez, C. (2008). Electrooxidation of chlorophenols at a glassy carbon electrode in a pH 11 buffer. Electrochimica Acta, 53, 2768–2775. DOI: 10.1016/j.electacta.2007.10.053. http://dx.doi.org/10.1016/j.electacta.2007.10.05310.1016/j.electacta.2007.10.053Search in Google Scholar

[4] Brillas, E., Mur, E., Sauleda, R., Sánchez, L., Peral, J., Domènech, X., & Casado, J. (1998). Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental, 16, 31–42. DOI: 10.1016/S0926-3373(97)00059-3. http://dx.doi.org/10.1016/S0926-3373(97)00059-310.1016/S0926-3373(97)00059-3Search in Google Scholar

[5] Cañizares, P., Martínez, L., Paz, R., Sáez, C., Lobato, J., & Rodrigo, M. A. (2006). Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with borondoped diamond anodes. Journal of Chemical Technology and Biotechnology, 81, 1331–1337. DOI: 10.1002/jctb.1428. http://dx.doi.org/10.1002/jctb.140210.1002/jctb.1428Search in Google Scholar

[6] Cañizares, P., Sáez, C., Lobato, J., & Rodrigo, M. A. (2004). Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 49, 4641–4650. DOI: 10.1016/j.electacta.2004.05.019. http://dx.doi.org/10.1016/j.electacta.2004.05.01910.1016/j.electacta.2004.05.019Search in Google Scholar

[7] Charoenraks, T., Chuanuwatanakul, S., Honda, K., Yamaguchi, Y., & Chailapakul, O. (2005). Analysis of tetracycline antibiotics using HPLC with pulsed amperometric detection. Analytial Sciences, 21, 241–245. DOI: 10.2116/analsci.21.241. http://dx.doi.org/10.2116/analsci.21.24110.2116/analsci.21.241Search in Google Scholar PubMed

[8] Chen, J., Liu, M., Zhang, J., Ying, X., & Jin, L. (2004). Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system. Journal of Environmental Management, 70, 43–47. DOI: 10.1016/j.jenvman.2003.09.019. http://dx.doi.org/10.1016/j.jenvman.2003.09.01910.1016/j.jenvman.2003.09.019Search in Google Scholar PubMed

[9] Coteiro, R. D., & De Andrade, A. R. (2007). Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency. Journal of Applied Electrochemistry, 37, 691–698. DOI: 10.1007/s10800-007-9301-9. http://dx.doi.org/10.1007/s10800-007-9301-910.1007/s10800-007-9301-9Search in Google Scholar

[10] Gherardini, L., Michaud, P. A., Panizza, M., Comninellis, C., & Vatistas, N. (2001). Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency (ϕ). Journal of the Electrochemical Society, 148, D78–D82. DOI: 10.1149/1.1368105. http://dx.doi.org/10.1149/1.136810510.1149/1.1368105Search in Google Scholar

[11] Gomathi Devi, L., Kottam, N., Girish Kumar, S., & Anantha Raju, K. S. (2009). Mechanism of charge transfer in the transition metal ion doped TiO2 with bicrystalline framework of anatase and rutile: photocatalytic and photoelectrocatalytic activity. Catalysis Letters, 131, 612–617. DOI: 10.1007/s10562-009-0015-y. http://dx.doi.org/10.1007/s10562-009-0015-y10.1007/s10562-009-0015-ySearch in Google Scholar

[12] Krýsa, J., & Jirkovský, J. (2002). Electrochemically assisted photocatalytic degradation of oxalic acid on particulate TiO2 film in a batch mode plate photoreactor. Journal of Applied Electrochemistry, 32, 591–596. DOI: 10.1023/A:1020172613963. http://dx.doi.org/10.1023/A:102017261396310.1023/A:1020172613963Search in Google Scholar

[13] Lei, Y., Shen, Z., Chen, X., Jia, J., & Wang, W. (2006). Preparation and application of nano-TiO2 catalyst in dye electrochemical treatment. Water SA, 32, 205–210. Search in Google Scholar

[14] Li, F., Jiang, Y., Yu, L., Yang, Z., Hou, T., & Sun, S. (2005). Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Applied Surface Science, 252, 1410–1416. DOI: 10.1016/j.apsusc.2005.02.111. http://dx.doi.org/10.1016/j.apsusc.2005.02.11110.1016/j.apsusc.2005.02.111Search in Google Scholar

[15] Li, J., Zheng, L., Li, L., Xian, Y., & Jin, L. (2007). Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. Journal of Hazardous Materials, 139, 72–78. DOI:10.1016/j.jhazmat.2006.06.003. http://dx.doi.org/10.1016/j.jhazmat.2006.06.00310.1016/j.jhazmat.2006.06.003Search in Google Scholar

[16] Neelavannan, M. G., & Ahmed Basha, C. (2007). Electrochemical-assisted photocatalytic degradation of textile washwater. Separation and Purification Technology, 61, 168–174. DOI: 10.1016/j.seppur.2007.10.009. http://dx.doi.org/10.1016/j.seppur.2007.10.00910.1016/j.seppur.2007.10.009Search in Google Scholar

[17] Neelavannan, M. G., Revathi, M., & Ahmed Basha, C. (2007). Photocatalytic and electrochemical combined treatment of textile wash water. Journal of Hazardous Materials, 149, 371–378. DOI: 10.1016/j.jhazmat.2007.04.025. http://dx.doi.org/10.1016/j.jhazmat.2007.04.02510.1016/j.jhazmat.2007.04.025Search in Google Scholar

[18] Peñalver, A., Pocurull, E., Borrull, F., & Marcé, R. M. (2002). Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples. Journal of Chromatography A, 953, 79–87. DOI: 10.1016/S0021-9673(02)00113-9. http://dx.doi.org/10.1016/S0021-9673(02)00113-910.1016/S0021-9673(02)00113-9Search in Google Scholar

[19] Quiroz, M. A., Reyna, S., Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B: Environmental, 59, 259–266. DOI: 10.1016/j.apcatb.2005.02.009. http://dx.doi.org/10.1016/j.apcatb.2005.02.00910.1016/j.apcatb.2005.02.009Search in Google Scholar

[20] Ratiu, C., Lazau, C., Sfirloaga, P., Orha, C., Sonea, D., Novaconi, S., Manea, F., Burtica, G., & Grozescu, I. (2009a). Decontaminate effect of the functionalized materials with undoped and doped (Ag) TiO2 nanocrystals. Environmental Engineering and Management Journal, 8, 237–242. 10.30638/eemj.2009.034Search in Google Scholar

[21] Ratiu, C., Lazau, C., Orha, C., Sfirloaga, P., Manea, F., Burtica, G., Iovi, A., & Grozescu, I. (2009b). Synthesis of hybrid zeolitic materials with TiO2 nanocrystals using solid-solid method. Journal of Optoelectronics and Advanced Materials, 11, 838–844. Search in Google Scholar

[22] Safavi, A., Maleki, N., & Moradlou, O. (2008). A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis, 20, 2158–2162. DOI: 10.1002/elan.200804292. http://dx.doi.org/10.1002/elan.20080429210.1002/elan.200804292Search in Google Scholar

[23] Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázques, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565, 375–383. DOI: 10.1016/j.jelechem.2003.11.005. http://dx.doi.org/10.1016/j.jelechem.2003.11.00510.1016/j.jelechem.2003.11.005Search in Google Scholar

[24] Selcuk, H., & Bekbolet, M. (2008). Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode. Chemosphere, 73, 854–858. DOI: 10.1016/j.chemosphere.2008.05.069. http://dx.doi.org/10.1016/j.chemosphere.2008.05.06910.1016/j.chemosphere.2008.05.069Search in Google Scholar

[25] Shen, Z. M., Wu, D., Yang, J., Yuan, T., Wang, W. H., & Jia, J. P. (2006). Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 131, 90–97. DOI: 10.1016/j.jhazmat.2005.09.010. http://dx.doi.org/10.1016/j.jhazmat.2005.09.01010.1016/j.jhazmat.2005.09.010Search in Google Scholar

[26] Skowrońsky, J. M., & Krawczyk, P. (2007). Improved electrooxidation of phenol at exfoliated graphite electrodes. Journal of Solid State Electrochemistry, 11, 223–230. DOI: 10.1007/s10008-005-0092-9. 10.1007/s10008-005-0092-9Search in Google Scholar

[27] Suffredini, H. B., Machado, S. A. S., & Avaca, L. A. (2004). The water decomposition reactions on boron-doped diamond electrodes. Journal of the Brazilian Chemical Society, 15, 16–21. DOI: 10.1590/S0103-50532004000100004. http://dx.doi.org/10.1590/S0103-5053200400010000410.1590/S0103-50532004000100004Search in Google Scholar

[28] Sun, M., Yao, R., You, Y., Deng, S., & Gao, W. (2007). Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Frontiers of Environmental Science & Engineering in China, 1, 95–98. DOI: 10.1007/s11783-007-0018-0. http://dx.doi.org/10.1007/s11783-007-0018-010.1007/s11783-007-0018-0Search in Google Scholar

[29] Takeda, N., Torimoto, T., Sampath, S., Kuwabata, S., & Yoneyama, H. (1995). Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. The Journal of Physical Chemistry, 99, 9986–9991. DOI: 10.1021/j100024a047. http://dx.doi.org/10.1021/j100024a04710.1021/j100024a047Search in Google Scholar

[30] Ureta-Zañartu, M. S., Bustos, P., Berríos, C, Diez, M. C., Mora, M. L., & Gutiérrez, C. (2002). Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochimica Acta, 47, 2399–2406. DOI: 10.1016/S0013-4686(02)00043-9. http://dx.doi.org/10.1016/S0013-4686(02)00043-910.1016/S0013-4686(02)00043-9Search in Google Scholar

[31] Walsh, F. C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure and Applied Chemistry, 73, 1819–1837. DOI: 10.1351/pac200173121819. http://dx.doi.org/10.1351/pac20017312181910.1351/pac200173121819Search in Google Scholar

[32] Wang, B., Kong, W., & Ma, H. (2007). Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. Journal of Hazardous Materials, 146, 295–301. DOI: 10.1016/j.jhazmat.2006.12.031. http://dx.doi.org/10.1016/j.jhazmat.2006.12.03110.1016/j.jhazmat.2006.12.031Search in Google Scholar PubMed

[33] Wang, Y. H., Chan, K. Y., Li, X. Y., & So, S. K. (2006) Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode. Chemosphere, 65, 1087–1093. DOI:10.1016/j.chemosphere.2006.04.061. http://dx.doi.org/10.1016/j.chemosphere.2006.04.06110.1016/j.chemosphere.2006.04.061Search in Google Scholar PubMed

[34] Zhang, Y., Yoshihara, S., & Shirakashi, T. (2005). Novel application of boron-doped diamond and related material to electrochemical generation of functional water. Electrochimica Acta, 51, 1008–1011. DOI: 10.1016/j.electacta.2005.04.054. http://dx.doi.org/10.1016/j.electacta.2005.04.05410.1016/j.electacta.2005.04.054Search in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0009-2/pdf
Scroll to top button