Home Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
Article
Licensed
Unlicensed Requires Authentication

Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials

  • Vikas Ghule EMAIL logo , Radhakrishnan Sarangapani , Pandurang Jadhav and Surya Tewari
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

Bicyclo[1.1.1]pentane is a highly strained hydrocarbon system due to close proximity of nonbonded bridge head carbons. Based on fully optimized molecular geometries at the density functional theory using the B3LYP/6-31G* level, densities, detonation velocities, and pressures for a series of polynitrobicyclo[1.1.1]pentanes, as well as their thermal stabilities were investigated in search for high energy density materials (HEDMs). The designed compounds with more than two nitro groups are characterized by high heat of formation and magnitude correlative with the number and space distance of nitro groups. Density was calculated using the crystal packing calculations and an increase in the number of nitro groups increases the density. The increase in density shows a linear increase in the detonation characteristics. Bond dissociation energy was analyzed to determine thermal stability. Calculations of the bond length and bond dissociation energies of the C-NO2 bond indicate that this may be the possible trigger bond in the pyrolysis mechanism. 1,2,3-Trinitrobicyclo[1.1.1]pentane (S3), 1,2,3,4-tetranitrobicyclo[1.1.1]pentane (S4), and 1,2,3,4,5-pentanitrobicyclo[1.1.1]pentane (S5) have better energetic characteristics with better stability and insensitivity, and as such may be explored in defense applications as promising candidates of the HEDMs series.

[1] Accelrys (2004). Materials Studio 4.01. San Diego, CA, USA: Accelrys Inc. Search in Google Scholar

[2] Alkorta, I., & Elguero, J. (1997). Carbon acidity and ring strain: A hybrid HF-DFT approach (Becke3LYP/6-311++G**). Tetrahedron, 53, 9741–9748. DOI: 10.1016/S0040-4020(97)00597-8. http://dx.doi.org/10.1016/S0040-4020(97)00597-810.1016/S0040-4020(97)00597-8Search in Google Scholar

[3] Archibald, T. G., Garver, L. C., Baum, K., & Cohen, M. C. (1989). Synthesis of polynitrocyclobutane derivatives. Journal of Organic Chemistry, 54, 2869–2873. DOI: 10.1021/jo00273a019. http://dx.doi.org/10.1021/jo00273a01910.1021/jo00273a019Search in Google Scholar

[4] Archibald, T. G., Gilardi, R., Baum, K., & George, C. (1990). Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. Journal of Organic Chemistry, 55, 2920–2924. DOI: 10.1021/jo00296a066. http://dx.doi.org/10.1021/jo00296a06610.1021/jo00296a066Search in Google Scholar

[5] Badgujar, D. M., Talawar, M. B., Asthana, S. N., & Mahulikar, P. P. (2008). Advances in science and technology of modern energetic materials: An overview. Journal of Hazardous Materials, 151, 289–305. DOI:10.1016/j.jhazmat.2007.10.039. http://dx.doi.org/10.1016/j.jhazmat.2007.10.03910.1016/j.jhazmat.2007.10.039Search in Google Scholar

[6] Baur, W. H., & Kassner, D. (1992). The perils of Cc: Comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallographica Section B, 48, 356–369. DOI: 10.1107/S0108768191014726. http://dx.doi.org/10.1107/S010876819101472610.1107/S0108768191014726Search in Google Scholar

[7] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5662. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Search in Google Scholar

[8] Belsky, V. K., & Zorkii, P. M. (1977). Distribution of organic homomolecular crystals by chiral types and structural classes. Acta Crystallographica Section A, 33, 1004–1006. DOI: 10.1107/S0567739477002393. http://dx.doi.org/10.1107/S056773947700239310.1107/S0567739477002393Search in Google Scholar

[9] Chapman, R. D. (2007). Organic difluoramine derivatives. Structure and Bonding, 125, 123–151. DOI: 10.1007/4302007058. http://dx.doi.org/10.1007/430_2007_058Search in Google Scholar

[10] Chiang, J. F., & Bauer, S. H. (1970). Molecular structure of bicyclo[1.1.1]pentane. Journal of the American Chemical Society, 92, 1614–1617. DOI: 10.1021/ja00709a032. http://dx.doi.org/10.1021/ja00709a03210.1021/ja00709a032Search in Google Scholar

[11] Costantino, G., Maltoni, K., Marinozzi, M., Camaioni, E., Prezeau, L., Pin, J.-P., & Pellicciari, R. (2001). Synthesis and biological evaluation of 2-(3′-(1H-tetrazol-5-yl)bicyclo[1.1.1] pent-1-yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist. Bioorganic & Medicinal Chemistry, 9, 221–227. DOI: 10.1016/S0968-0896(00)00270-4. http://dx.doi.org/10.1016/S0968-0896(00)00270-410.1016/S0968-0896(00)00270-4Search in Google Scholar

[12] Della, E. W., & Elsey, G. M. (1988). Through-space effects of substituents on the stability of the 1-bicyclo[3.1.1]heptyl cation. Tetrahedron Letters, 29, 1299–1302. DOI: 10.1016/S0040-4039(00)80282-8. http://dx.doi.org/10.1016/S0040-4039(00)80282-810.1016/S0040-4039(00)80282-8Search in Google Scholar

[13] Eaton, P. E., Ravi Shankar, B. K., Price, G. D., Pluth, J. J., Gilbert, E. E., Alster, J., & Sandus, O. (1984). Synthesis of 1,4-dinitrocubane. Journal of Organic Chemistry, 49, 185–186. DOI: 10.1021/jo00175a044. http://dx.doi.org/10.1021/jo00175a04410.1021/jo00175a044Search in Google Scholar

[14] Fan, X.-W., & Ju, X.-H. (2008). Theoretical studies on fourmembered ring compounds with NF2, ONO2, N3, and NO2 groups. Journal of Computational Chemistry, 29, 505–513. DOI: 10.1002/jcc.20809. http://dx.doi.org/10.1002/jcc.2080910.1002/jcc.20809Search in Google Scholar

[15] Fan, X.-W., Ju, X.-H., & Xiao, H.-M. (2008). Density functional theory study of piperidine and diazocine compounds. Journal of Hazardous Materials, 156, 342–347. DOI: 10.1016/j.jhazmat.2007.12.024. http://dx.doi.org/10.1016/j.jhazmat.2007.12.02410.1016/j.jhazmat.2007.12.024Search in Google Scholar

[16] Fischer, J. W., Hollins, R. A., Lowe-ma, C. K., Nissan, R. A., & Chapman, R. D. (1996). Synthesis and characterization of 1,2,3,4-cyclobutanetetranitramine derivatives. Journal of Organic Chemistry, 61, 9340–9343. DOI: 10.1021/jo9613040. http://dx.doi.org/10.1021/jo961304010.1021/jo9613040Search in Google Scholar

[17] Fried, L. E., Manaa, M. R., Pagoria, P. F., & Simpson, R. L. (2001). Design and synthesis of energetic materials. Annual Review of Materials Research, 31, 291–321. DOI: 10.1146/annurev.matsci.31.1.291. http://dx.doi.org/10.1146/annurev.matsci.31.1.29110.1146/annurev.matsci.31.1.291Search in Google Scholar

[18] Friedli, A. C., Kaszynski, P., & Michl, J. (1989). Towards a molecular-size construction set: 3,3(n−1)-bisacetylthio[n]staffanes. Tetrahedron Letters, 30, 455–458. DOI: 10.1016/S0040-4039(00)95226-2. http://dx.doi.org/10.1016/S0040-4039(00)95226-210.1016/S0040-4039(00)95226-2Search in Google Scholar

[19] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Jr., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H. P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03. Revision A.1, Pittsburgh, PA, USA: Gaussian, Inc. Search in Google Scholar

[20] Ghule, V. D., Jadhav, P. M., Patil, R. S., Radhakrishnan, S., & Soman, T. (2010). Quantum-chemical studies on hexaazaisowurtzitanes. Journal of Physical Chemistry A, 114, 498–503. DOI: 10.1021/jp9071839. http://dx.doi.org/10.1021/jp907183910.1021/jp9071839Search in Google Scholar PubMed

[21] Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 28, 213–222. DOI: 10.1007/BF00533485. 10.1007/BF00533485Search in Google Scholar

[22] Huynh, M.-H. V., Hiskey, M. A., Hartline, E. L., Montoya, D. P., & Gilardi, R. (2004). Polyazido high-nitrogen compounds: Hydrazo- and azo-1,3,5-triazine. Angewandte Chemie International Edition, 43, 4924–4928. DOI: 10.1002/anie.200460366. http://dx.doi.org/10.1002/anie.20046036610.1002/anie.200460366Search in Google Scholar PubMed

[23] Jalovy, Z., Zeman, S., Sučeska, M., Vávra, P., Dudek, K., & Rajić, M. (2001). 1,3,3-Trinitroazetidine (TNAZ). Part I. syntheses and properties. Journal of Energetic Materials, 19, 219–239. DOI: 10.1080/07370650108216127. http://dx.doi.org/10.1080/0737065010821612710.1080/07370650108216127Search in Google Scholar

[24] Ju, X.-H., Wang, X., & Bei, F.-L. (2005). Substituent effects on heats of formation, group interactions, and detonation properties of polyazidocubanes. Journal of Computational Chemistry, 26, 1263–1269. DOI: 10.1002/jcc.20263. http://dx.doi.org/10.1002/jcc.2026310.1002/jcc.20263Search in Google Scholar

[25] Kamlet, M. J., & Jacobs, S. J. (1968). Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives, Journal of Chemical Physics, 48, 23–35. DOI: 10.1063/1.1667908. http://dx.doi.org/10.1063/1.166790810.1063/1.1667908Search in Google Scholar

[26] Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar

[27] Levin, M. D., Kaszynski, P., & Michl, J. (2000). Bicyclo[1.1.1]pentanes, [n]staffanes, [1.1.1]propellanes, and tricycle[2.1.0.02,5]pentanes. Chemical Reviews, 100, 169–234. DOI: 10.1021/cr990094z. http://dx.doi.org/10.1021/cr990094z10.1021/cr990094zSearch in Google Scholar

[28] Luo, S. J., Pan, W. L., Chi, Y. N., Xu, Y. Q., Huang, K. L., & Hu, C. W. (2008). Synthesis and characterization of a novel high thermally stable energy compound: 1-(1-Adamantylamino)-2,4,6-trinitrobenzene. Chinese Chemical Letters, 19, 1147–1150. DOI: 10.1016/j.cclet.2008.06.030. http://dx.doi.org/10.1016/j.cclet.2008.06.03010.1016/j.cclet.2008.06.030Search in Google Scholar

[29] Mayo, S. L., Olafson, B. D., & Goddard, W. A. (1990). DREIDING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94, 8897–8909. DOI: 10.1021/j100389a010. http://dx.doi.org/10.1021/j100389a01010.1021/j100389a010Search in Google Scholar

[30] Mondal, T., Saritha, B., Ghanta, S., Roy, T. K., Mahapatra, S., & Durga Prasad, M. (2009). On some strategies to design new high energy density molecules. Journal of Molecular Structure: THEOCHEM, 897, 42–47. DOI: 10.1016/j.theochem.2008.11.013. http://dx.doi.org/10.1016/j.theochem.2008.11.01310.1016/j.theochem.2008.11.013Search in Google Scholar

[31] Nielsen, A. T., Nissan, R. A., Vanderah, D. J., Coon, C. L., Gilardi, R. D., George, C. F., & Flippen-Anderson, J. (1990). Polyazapolycyclics by condensation of aldehydes with amines. 2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05.9.03,11]dodecanes from glyoxal and benzylamines. Journal of Organic Chemistry, 55, 1459–1466. DOI: 10.1021/jo00292a015. http://dx.doi.org/10.1021/jo00292a01510.1021/jo00292a015Search in Google Scholar

[32] Pagoria, P. F., Lee, G. S., Mitchell, A. R., & Schmidt, R. D. (2002). A review of energetic materials synthesis. Thermochimica Acta, 384, 187–204. DOI: 10.1016/S0040-6031(01)00805-X. http://dx.doi.org/10.1016/S0040-6031(01)00805-X10.1016/S0040-6031(01)00805-XSearch in Google Scholar

[33] Peralta-Inga, Z., Degirmenbasi, N., Olgun, U., Gocmez, H., & Kalyon, D. M. (2006). Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: Part I, mathematical modeling using molecular dynamics method. Journal of Energetic Materials, 24, 69–101. DOI: 10.1080/07370650600672082. http://dx.doi.org/10.1080/0737065060067208210.1080/07370650600672082Search in Google Scholar

[34] Politzer, P., Lane, P., & Concha, M. C. (2004). Computational determination of nitroaromatic solid phase heats of formation. Structural Chemistry, 15, 469–478. DOI: 10.1023/B:STUC.0000037904.53310.40. http://dx.doi.org/10.1023/B:STUC.0000037904.53310.4010.1023/B:STUC.0000037904.53310.40Search in Google Scholar

[35] Politzer, P., Lane, P., Grice, M. E., Concha, M. C., & Redfern, P. C. (1995). Comparative computational analysis of some nitramine and difluoramine structures, dissociation energies and heats of formation. Journal of Molecular Structure: THEOCHEM, 338, 249–256. DOI: 10.1016/0166-1280(94)04064-Y. http://dx.doi.org/10.1016/0166-1280(94)04064-Y10.1016/0166-1280(94)04064-YSearch in Google Scholar

[36] Qiu, L., Gong, X., Zheng, J., & Xiao, H. (2009). Theoretical studies on polynitro-1,3-bishomopentaprismanes as potential high energy density compounds. Journal of Hazardous Materials, 166, 931–938. DOI: 10.1016/j.jhazmat.2008.11.099. http://dx.doi.org/10.1016/j.jhazmat.2008.11.09910.1016/j.jhazmat.2008.11.099Search in Google Scholar

[37] Semmler, K., Szeimies, G., & Belzner, J. (1985). Tetracyclo[5.1.0.01,6.02,7]octane, a [1.1.1]propellane derivative, and a new route to the parent hydrocarbon. Journal of the American Chemical Society, 107, 6410–6411. DOI: 10.1021/ja00308a053. http://dx.doi.org/10.1021/ja00308a05310.1021/ja00308a053Search in Google Scholar

[38] Shao, J., Cheng, X., & Yang, X. (2005). Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. Journal of Molecular Structure: THEOCHEM, 755, 127–130. DOI: 10.1016/j.theochem.2005.08.008. http://dx.doi.org/10.1016/j.theochem.2005.08.00810.1016/j.theochem.2005.08.008Search in Google Scholar

[39] Shtarev, A. B., Pinkhassik, E., Levin, M. D., Stibor, I., & Michl, J. (2001). Partially bridge-fluorinated dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylates: Preparation and NMR spectra. Journal of the American Chemical Society, 123, 3484–3492. DOI: 10.1021/ja0000495. 10.1021/ja0000495Search in Google Scholar

[40] Sikder, N., Sikder, A. K., Bulakh, N. R., & Gandhe, B. R. (2004). 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. Journal of Hazardous Materials, 113, 35–43. DOI: 10.1016/j.jhazmat.2004.06.002. http://dx.doi.org/10.1016/j.jhazmat.2004.06.00210.1016/j.jhazmat.2004.06.002Search in Google Scholar

[41] Sollott, G. P., & Gilbert, E. E. (1980). A facile route to 1,3,5,7-tetraaminoadamantane. Synthesis of 1,3,5,7-tetranitroadamantane. Journal of Organic Chemistry, 45, 5405–5408. DOI: 10.1021/jo01314a051. http://dx.doi.org/10.1021/jo01314a05110.1021/jo01314a051Search in Google Scholar

[42] Stulgies, B., Pigg, D. P., Jr., Kaszynski, P., & Kudzin, Z. H. (2005). 9,9-Dimethyl-8,10-dioxapentacyclo[5.3.0.02,5.03,5.03,6]decane and naphthotetracyclo[5.1.0.01,6.02,7]oct-3-ene: new substituted [1.1.1]propellanes as precursors to 1,2,3,4-tetrafunctionalized bicyclo[1.1.1]pentanes. Tetrahedron, 61, 89–95. DOI: 10.1016/j.tet.2004.10.057. http://dx.doi.org/10.1016/j.tet.2004.10.05710.1016/j.tet.2004.10.057Search in Google Scholar

[43] Surya Prakash, G. K., Bae, C., Kroll, M., Olah, G. A. (2002). Synthesis of 1,3-bis(N,N-difluoroamino)adamantane: addition of difluoramino radicals to 1,3-dehydroadamantane. Journal of Fluorine Chemistry, 117, 103–105. DOI: 10.1016/S0022-1139(02)00155-0. http://dx.doi.org/10.1016/S0022-1139(02)00155-010.1016/S0022-1139(02)00155-0Search in Google Scholar

[44] Wei, T., Zhu, W., Zhang, X., Li, Y.-F., & Xiao, H. (2009). Molecular design of 1,2,4,5-tetrazine based high-energy density materials. Journal of Physical Chemistry A, 113, 9404–9412. DOI: 10.1021/jp902295v. http://dx.doi.org/10.1021/jp902295v10.1021/jp902295vSearch in Google Scholar

[45] Wiberg, K. B. (1985). Origin of strain in bicyclo[1.1.1]pentane. Tetrahedron Letters, 26, 599–602. DOI: 10.1016/S0040-4039(00)89157-1. http://dx.doi.org/10.1016/S0040-4039(00)89157-110.1016/S0040-4039(00)89157-1Search in Google Scholar

[46] Wiberg, K. B., Connor, D. S., & Lampman, G. M. (1964). The reaction of 3-bromocyclobutane-1-methyl bromide with sodium: bicyclo[1.1.1]pentane. Tetrahedron Letters, 5, 531–534. DOI: 10.1016/S0040-4039(00)73269-2. http://dx.doi.org/10.1016/S0040-4039(00)73269-210.1016/S0040-4039(00)73269-2Search in Google Scholar

[47] Wiberg, K. B., Hadad, C. M., Sieber, S., & Schleyer, P. v. R. (1992). Structures and energies of ions derived from bicyclo[1.1.1]pentane. Journal of the American Chemical Society, 114, 5820–5828. DOI: 10.1021/ja00040a051. http://dx.doi.org/10.1021/ja00040a05110.1021/ja00040a051Search in Google Scholar

[48] Wiberg, K. B., Ross, B. S., Isbell, J. J., & McMurdie, N. (1993). 2-Substituted bicyclo[1.1.1]pentanes. Journal of Organic Chemistry, 58, 1372–1376. DOI: 10.1021/jo00058a015. http://dx.doi.org/10.1021/jo00058a01510.1021/jo00058a015Search in Google Scholar

[49] Wiberg, K. B., & Waddell, S. T. (1990). Reactions of [1.1.1]propellane. Journal of the American Chemical Society, 112, 2194–2216. DOI: 10.1021/ja00162a022. http://dx.doi.org/10.1021/ja00162a02210.1021/ja00162a022Search in Google Scholar

[50] Wilcox, C. F., Zhang, Y.-X., & Bauer, S. H. (2000). The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. Journal of Molecular Structure: THEOCHEM, 528, 95–109. DOI: 10.1016/S0166-1280(99)00475-3. http://dx.doi.org/10.1016/S0166-1280(99)00475-310.1016/S0166-1280(99)00475-3Search in Google Scholar

[51] Williams, C. I., & Whitehead, M. A. (1997). Aromatic nitrogen heterocyclic heats of formation: a comparison of semiempirical and ab initio treatments. Journal of Molecular Structure: THEOCHEM, 393, 9–24. DOI: 10.1016/S0166-1280(96)04887-7. http://dx.doi.org/10.1016/S0166-1280(96)04887-710.1016/S0166-1280(96)04887-7Search in Google Scholar

[52] Xu, X.-J., Xiao, H.-M., Ju, X.-H., Gong, X.-D., & Zhu, W.-H. (2006). Computational studies on polynitrohexaaza-admantanes as potential high energy density materials. Journal of Physical Chemistry A, 110, 5929–5933. DOI: 10.1021/jp0575557. http://dx.doi.org/10.1021/jp057555710.1021/jp0575557Search in Google Scholar PubMed

[53] Yao, X.-Q., Hou, X.-J., Wu, G.-S., Xu, Y.-Y., Xiang, H.-W., Jiao, H., & Li, Y.-W. (2002). Estimation of C-C bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods. Journal of Physical Chemistry A, 106, 7184–7189. DOI: 10.1021/jp020607x. http://dx.doi.org/10.1021/jp020607x10.1021/jp020607xSearch in Google Scholar

[54] Zahedi, E., Aghaie, M., & Zare, K. (2009). A density functional study of NBO, NICS and 14N NQR parameters of 5-methylcytosine tautomers in the gas phase. Journal of Molecular Structure: THEOCHEM, 905, 101–105. DOI: 10.1016/j.theochem.2009.03.017. http://dx.doi.org/10.1016/j.theochem.2009.03.01710.1016/j.theochem.2009.03.017Search in Google Scholar

[55] Zhang, C. (2009). Review of the establishment of nitro group charge method and its applications. Journal of Hazardous Materials, 161, 21–28. DOI: 10.1016/j.jhazmat.2008.04.001. http://dx.doi.org/10.1016/j.jhazmat.2008.04.00110.1016/j.jhazmat.2008.04.001Search in Google Scholar

[56] Zhang, C. (2006). Investigation on the correlation between the interaction energies of all substituted groups and the molecular stabilities of nitro compounds. Journal of Physical Chemistry A, 110, 14029–14035. DOI: 10.1021/jp063734s. http://dx.doi.org/10.1021/jp063734s10.1021/jp063734sSearch in Google Scholar

[57] Zhang, C., Shu, Y., Huang, Y., & Wang, X. (2005a). Theoretical investigation of the relationship between impact sensitivity and the charges of the nitro group in nitro compounds. Journal of Energetic Materials, 23, 107–119. DOI: 10.1080/07370650590936433. http://dx.doi.org/10.1080/0737065059093643310.1080/07370650590936433Search in Google Scholar

[58] Zhang, C., Shu, Y., Huang, Y., Zhao, X., & Dong, H. (2005b). Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. Journal of Physical Chemistry B, 109, 8978–8982. DOI: 10.1021/jp0512309. http://dx.doi.org/10.1021/jp051230910.1021/jp0512309Search in Google Scholar

[59] Zhang, J., Xiao, H., & Gong, X. (2001). Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods. Journal of Physical Organic Chemistry, 14, 583–588. DOI:10.1002/poc.404. http://dx.doi.org/10.1002/poc.40410.1002/poc.404Search in Google Scholar

[60] Zhang, M.-X., Eaton, P. E., & Gilardi, R. (2000). Hepta- and octanitrocubanes. Angewandte Chemie International Edition, 39, 401–404. DOI: 10.1002/(SICI)1521-3773(20000117)39:2〈401::AID-ANIE401〉3.0.CO;2-P. http://dx.doi.org/10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-PSearch in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0002-9/html?lang=en
Scroll to top button