Startseite Carnauba wax microparticles produced by melt dispersion technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Carnauba wax microparticles produced by melt dispersion technique

  • Jelena Milanovic EMAIL logo , Steva Levic , Verica Manojlovic , Viktor Nedovic und Branko Bugarski
Veröffentlicht/Copyright: 26. Januar 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Melt dispersion technique was investigated for carnauba wax microparticles production. Microbeads with spherical shape and narrow size distribution were produced. The main objective of this study was to investigate the effect of significant process variables (initial wax concentration, stirring speed, stirring time, and surfactants) on sphericity, size distribution, and morphological properties of wax microparticles. Optimal conditions were evaluated on the basis of particle size distribution and visual analysis. Surface morphology of microparticles was characterized by scanning electron microscopy (SEM). Effects of process conditions on the size distribution of particles were evaluated by sieve analysis. Main purpose of these investigations was to apply optimized parameters to aroma encapsulation for their use in food and feed industry.

[1] Albertini, B., Passerini, N., Pattarino, F., & Rodriguez, L. (2008). New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. European Journal of Pharmaceutics and Biopharmaceutics, 69, 348–357. DOI: 10.1016/j.ejpb.2007.09.011. http://dx.doi.org/10.1016/j.ejpb.2007.09.01110.1016/j.ejpb.2007.09.011Suche in Google Scholar

[2] Barakat, N. S., & Yassin, A. B. E. (2006). In vitro characterization of carbamazepine-loaded precifac lipospheres. Drug Delivery, 13, 95–104. DOI: 10.1080/10717540500313661. http://dx.doi.org/10.1080/1071754050031366110.1080/10717540500313661Suche in Google Scholar

[3] Card, Q. P., Deerfield, N. K., & Palatine, S. (1960). Flavor premixes for animal feeds. U. S. Patent No. 2,921,853. U.S. Patent Office. Suche in Google Scholar

[4] Cheboyina, S., & Wyandt, C. M. (2008). Wax-based sustained release matrix pellets prepared by a novel freeze pelletization technique: II. In vitro drug release studies and release mechanisms. International Journal of Pharmaceutics, 359, 167–173. DOI: 10.1016/j.ijpharm.2008.04.001. http://dx.doi.org/10.1016/j.ijpharm.2008.04.00110.1016/j.ijpharm.2008.04.001Suche in Google Scholar

[5] Curle, N., & Davies, H. J. (1968). Modern fluid dynamics (Vol. 1). London, UK: Van Nostrand. Suche in Google Scholar

[6] Donhowe, I. G., & Fennema, O. (1993). Water vapor and oxygen permeability of wax films. Journal of the American Oil Chemists’ Society, 70, 867–873. DOI: 10.1007/BF02545345. http://dx.doi.org/10.1007/BF0254534510.1007/BF02545345Suche in Google Scholar

[7] Dunker, M. F. W. (1960). Colloids, emulsions and suspensions. In J. B. Sprowls (Ed.), American pharmacy: Textbook of pharmaceutical principles, processes and preparations (5th ed., pp. 107–148). Philadelphia, PA, USA: J. B. Lippincott Company. Suche in Google Scholar

[8] Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. Journal of Food Engineering, 75, 27–35. DOI: 10.1016/j.jfoodeng.2005.03.047. http://dx.doi.org/10.1016/j.jfoodeng.2005.03.04710.1016/j.jfoodeng.2005.03.047Suche in Google Scholar

[9] Gowda, D. V., & Shivakumar, H. G. (2007). Preparation and evaluation of waxes/fat microspheres loaded with lithium carbonate for controlled release. Indian Journal of Pharmaceutical Sciences, 69, 251–256. DOI: 10.4103/0250-474X.33152. http://dx.doi.org/10.4103/0250-474X.3315210.4103/0250-474X.33152Suche in Google Scholar

[10] Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AIChE Journal, 1, 289–295. DOI: 10.1002/aic.690010303. http://dx.doi.org/10.1002/aic.69001030310.1002/aic.690010303Suche in Google Scholar

[11] Jenning, V., & Gohla, S. (2000). Comparison of wax and glyceride solid lipid nanoparticles (SLN®). International Journal of Pharmaceutics, 196, 219–222. DOI: 10.1016/S0378-5173(99)00426-3. http://dx.doi.org/10.1016/S0378-5173(99)00426-310.1016/S0378-5173(99)00426-3Suche in Google Scholar

[12] Holmberg, K., Jönsson, B., Kronberg, B., & Lindman, B. (2003). Surfactants and polymers in aqueous solution (2nd ed., p. 463). Etobicoke, ON, Canada: Wiley. DOI: 10.1002/0470856424.ch21. 10.1002/0470856424.ch21Suche in Google Scholar

[13] Kamble, R., Maheshwari, M., Paradkar, A., & Kadam, S. (2004). Melt solidification technique: Incorporation of higher wax content in ibuprofen beads. AAPS PharmSciTech, 5(4), 75–83. DOI: 10.1208/pt050461. http://dx.doi.org/10.1208/pt05046110.1208/pt050461Suche in Google Scholar PubMed PubMed Central

[14] Katona, J. M., Sovilj, V. J., Petrović, L. B., & Mucić, N. Z. (2010). Tensiometric investigation of the interaction and phase separation in a polymer mixture-ionic surfactant ternary system. Journal of the Serbian Chemical Society, 75, 823–831. DOI: 10.2298/JSC100112056K. http://dx.doi.org/10.2298/JSC100112056K10.2298/JSC100112056KSuche in Google Scholar

[15] Kolmogorov, A. N. (1949). On the disintegration of drops in turbulent flow. Doklady Akademii Nauk SSSR, 66, 825–828. Suche in Google Scholar

[16] McClements, D. J. (1999). Food emulsions: Principles, practice, and techniques (2nd ed.). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar

[17] Media Cybernetics, Inc. (2007). Image Pro plus v. 6.2. Bethesda, MD, USA: Media Cybernetcs, Inc. Suche in Google Scholar

[18] Mellema, M., Van Benthum, W. A. J., Boer, B., Von Harras, J., & Visser, A. (2006). Wax encapsulation of water-soluble compounds for application in foods. Journal of Microencapsulation, 23, 729–740. DOI: 10.1080/02652040600787900. http://dx.doi.org/10.1080/0265204060078790010.1080/02652040600787900Suche in Google Scholar

[19] Milanovic, J., Manojlovic, V., Levic, S., Rajic, N., Nedovic, V., & Bugarski, B. (2010). Microencapsulation of flavors in Carnauba wax. Sensors, 10, 901–912. DOI: 10.3390/s100100901. http://dx.doi.org/10.3390/s10010090110.3390/s100100901Suche in Google Scholar

[20] Miyagawa, Y., Okabe, T., Yamaguchi, Y., Miyajima, M., Sato, H., & Sunada, H. (1996). Controlled-release of diclofenac sodium from wax matrix granule. International Journal of Pharmaceutics, 138, 215–224. DOI: 10.1016/0378-5173(96)04547-4. http://dx.doi.org/10.1016/0378-5173(96)04547-410.1016/0378-5173(96)04547-4Suche in Google Scholar

[21] Özyazıcı, M., Gökçe, E. H., & Ertan, G. (2006). Release and diffusional modeling of metronidazole lipid matrices. European Journal of Pharmaceutics and Biopharmaceutics, 63, 331–339. DOI: 10.1016/j.ejpb.2006.02.005. http://dx.doi.org/10.1016/j.ejpb.2006.02.00510.1016/j.ejpb.2006.02.005Suche in Google Scholar

[22] Passerini, N., Perissutti, B., Albertini, B., Voinovich, D., Moneghini, M., & Rodriguez, L. (2003). Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. Journal of Controlled Release, 88, 263–275. DOI: 10.1016/S0168-3659(03)00009-9. http://dx.doi.org/10.1016/S0168-3659(03)00009-910.1016/S0168-3659(03)00009-9Suche in Google Scholar

[23] Popplewell, M. L., & Porzio, A. M. (2001). Fat-coated encapsulation composition and method for preparing the same. U.S. Patent No. 6,245,366. U.S. Patent Office. Suche in Google Scholar

[24] Reithmeier, H., Herrmann, J., & Göpferich, A. (2001). Development and characterization of lipid microparticles as a drug carrier for somatostatin. International Journal of Pharmaceutics, 218, 133–143. DOI: 10.1016/S0378-5173(01)00620-2. http://dx.doi.org/10.1016/S0378-5173(01)00620-210.1016/S0378-5173(01)00620-2Suche in Google Scholar

[25] Rodriguez, L., Passerini, N., Cavallari, C., Cini, M., Sancin, P., & Fini, A. (1999). Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. International Journal of Pharmaceutics, 183, 133–143. DOI: 10.1016/S0378-5173(99)00076-9. http://dx.doi.org/10.1016/S0378-5173(99)00076-910.1016/S0378-5173(99)00076-9Suche in Google Scholar

[26] Singh, R., Poddar, S. S., & Chivate, A. (2007). Sintering of wax for controlling release from pellets. AAPS PharmSciTech, 8, E175–E183. DOI: 10.1208/pt0803074. http://dx.doi.org/10.1208/pt080307410.1208/pt0803074Suche in Google Scholar PubMed PubMed Central

[27] Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2007). In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 65, 122–125. DOI: 10.1016/j.ejpb.2006.07.013. http://dx.doi.org/10.1016/j.ejpb.2006.07.01310.1016/j.ejpb.2006.07.013Suche in Google Scholar PubMed

[28] Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2006a). Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: The synergistic interaction between organic and inorganic sunscreens at nanoscale. International Journal of Pharmaceutics, 322, 161–170. DOI: 10.1016/j.ijpharm.2006.05.037. http://dx.doi.org/10.1016/j.ijpharm.2006.05.03710.1016/j.ijpharm.2006.05.037Suche in Google Scholar

[29] Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2006b). Physical stability, centrifugation tests, and entrapment eficency studies of carnauba wax-decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media. European Journal of Pharmaceutics and Biopharmaceutics, 63, 115–127. DOI: 10.1016/j.ejpb.2006.01.005. http://dx.doi.org/10.1016/j.ejpb.2006.01.00510.1016/j.ejpb.2006.01.005Suche in Google Scholar

[30] Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2005). Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. European Journal of Pharmaceutics and Biopharmaceutics, 60, 113–122. DOI: 10.1016/j.ejpb.2004.11.002. http://dx.doi.org/10.1016/j.ejpb.2004.11.00210.1016/j.ejpb.2004.11.002Suche in Google Scholar

[31] Wang, L., Ando, S., Ishida, Y., Ohtani, H., Tsuge, S., & Nakayama, T. (2001). Quantitative and discriminative analysis of carnauba waxes by reactive pyrolysis-GC in the presence of organic alkali using a vertical microfurnace pyrolyzer. Journal of Analytical and Applied Pyrolysis, 58-59, 525–537. DOI: 10.1016/S0165-2370(00)00155-8. http://dx.doi.org/10.1016/S0165-2370(00)00155-810.1016/S0165-2370(00)00155-8Suche in Google Scholar

[32] Walstra, P., & Smudlers, I. (1997). Making emulsion and foams: an overview. In E. Dickinson, & B. Bergenstähl (Eds.), Food colloids, proteins, lipids and polysaccharides (pp. 367–381). Cambridge, UK: Royal Society of Chemistry. Suche in Google Scholar

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
  2. Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
  3. New SPME fibre for analysis of mequinol emitted from DVDs
  4. Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
  5. Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
  6. Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
  7. Kinetic study of pyrolysis of waste water treatment plant sludge
  8. Transport phenomena in an agitated vessel with an eccentrically located impeller
  9. Membrane extraction of 1-phenylethanol from fermentation solution
  10. Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
  11. Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
  12. The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
  13. Effectiveness of nitric oxide ozonation
  14. Modelling of nanocrystalline iron nitriding process — influence of specific surface area
  15. Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
  16. Carnauba wax microparticles produced by melt dispersion technique
  17. Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
  18. Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
  19. Continuous dialysis of sulphuric acid in the presence of zinc sulphate
  20. Differences in affinity of arylstilbazolium derivatives to tetraplex structures
  21. Fast ferritin immunoassay on PDMS microchips
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0001-x/pdf
Button zum nach oben scrollen